

A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider

Samuel MANEN, Laurent ROYER, Pascal GAY LPC Clermont-Ferrand

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

VFE electronics of the Ecal

jįį.

• Main requirements for the ADC:

- 100 Millions channels
- ULTRA LOW power is the key issue:
 - > 25 µW/channel
 - 2.5 µW for the ADC with one ADC per channel
 - Power pulsing needed
 - Advantages with one ADC/ch
 - No "fast" ADC required
 - Integrity of analog signals saved
 - Power saved
 - Resolution:
 - 12 bits if 2-gain shaping
- Time of conversion: 500 µs for 5 data
 - T_conversion = 100 μs
- Die area:
 - > As small as possible...

- > 1.5 bit per stage architecture
 - > Insensitive to the offset of the comparator, ± 1/8 of the dynamic range
- Silicon area and consumption limited due to the structure of the ADC
- Fully differential Input, reference, clock...
- Clock frequency 1MHz, Technology, 0,35µm CMOS AMS

- Resolution 12 bits
 - Open loop gain amplifier, A≥ 16484
 - Size capacitance, C ≥ 834 fF
- Conversion rate T<100µs
 - − Bandwidth of the amplifier, $f_{\mu} \ge 2.86MHz$
- Scilab description of the ADC
- Error of gain tolerated 0.8‰

- Sub ADC, 2 comparators
- DAC, switch array

✓ Clock frequency: 1MHz
✓ Supply voltage : 3.5V

✓ Sent to fabrication in March 08 via CMP, 10 chips delivered with delay in July

 ✓ Technology: 0.35 µm CMOS Austriamicrosystems.

 ✓ ADC designed with the validated building blocks (Amplifier & Comparator) of our 10-bit pipeline ADC (published in IEEE NSS in June 08) but optimized for the 12-bit precision requirement

✓ Power pulsing system implemented

	"Classical" Cyclic	"Optimized" Cyclic
Resolution	12 bits	12 bits
Number of elements	1 amplifier 2 comparators 1 capacitors array	1 amplifier 4 comparators 2 capacitors array
Time for one conversion	12 µs	7 µs
Power consumption	3.6mW	4mW
Integrated consumption	1.1µW	0.7µW
Area	0.145mm ²	0.175mm ²

Results of measurement

INL Measurement

✓ INL<+/-1.2 LSB ✓ Technology limitation due to polysilicon capacitors

Code fluctuation @ 1V

- Switch off the master current sources
- Recovery time of the biasing of the ADC is 1µs after 7µs latency

Summary

A 12-bit cyclic ADC prototype, dedicated to ECAL of ILC, has been fabricated in 0.35µm CMOS and is under test

□ First measured performance are in accordance with simulations

- Time conversion: 7µs
- Consumption: 4 mW/3.5V, integrated consumption: 0.7µW
- DNL<+/-1 LSB
- INL<+/-1.2 LSB</p>
- Noise standard deviation: 0.84LSB

Next measurements have to evaluate:

- Dependence of performance with clock frequency
- > Dynamic performance, SNR, SFDR...

□ Improvements of the yield (60%), CMFB

