Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook

$\mathcal{O}(\alpha \alpha_s)$ corrections to the $\gamma t \bar{t}$ vertex at the top quark threshold

Dirk Seidel

Department of Physics University of Alberta, Edmonton

in collaboration with Yuichiro Kiyo and Matthias Steinhauser

November 19th, 2008

- $\Gamma_t \gg \Lambda_{\rm QCD} \rightarrow$ non-pertubative effects are strongly supressed
- ullet simultanious determination of $m_t, \, lpha_s, \, \Gamma_t$ [Martinez, Miquel '02]

Expansion in $\alpha_s \sim v$ at threshold (NRQCD)

- hard matching corrections
- summing up terms $\left(\frac{\alpha_s}{v}\right)^n$ \rightsquigarrow solving Schrödinger equation with static QCD-potential

- NNLO calculations as big as NLO ones
- ILC: uncertainty < 100 MeV for m_t can be obtained
- theory: $\delta\sigma/\sigma\leq 3\%
 ightarrow$ NNNLO calcualation needed
- $\alpha \sim \alpha_s^2 \rightarrow \alpha \alpha_s$ corrections are NNNLO

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
0000	000	00000000	00	0

• QCD:

- NNNLO bound state corrections [Beneke, Kiyo, Schuller '08] [Beneke, Kiyo, Penin '07] [Beneke, Kiyo '08]
- 3–loop hard corrections
 - n_l [Marquard, Piclum, DS, Steinhauser '06]
 - n_h , singlet: in preparation
- partial NNLL RG improvement [Hoang '03; Pineda, Signer '06] $(m_t \gg \mathbf{p} \simeq m_t v \gg E \simeq m_t v^2)$
- EW:
 - α [Grzadkowski, Kühn, Krawczyk, Stuart '87; Guth, Kühn '92; Hoang, Reißer '05]
 - 2-loop $\alpha \alpha_s$
 - hard Z/H and gluon [Eiras, Steinhauser '06]
 - hard W and gluon corrections [Kiyo, DS, Steinhauser '08]

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$ 000	Scalar Integrals	Results	Conclusion and Outlook
000●		000000000	00	O
Outline				

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$ =00	Scalar Integrals	Results	Conclusion and Outlook
0000		000000000	00	O
Hard corr	ections at ${\cal O}(lpha lpha_s)$			

EW⊗QCD

- $\Gamma_{e^+e^-}$, $\Pi_{\gamma/\mathbf{Z}}$: trivial/simple
- $\Gamma_{t\bar{t}}$
 - Z/H and gluon [Eiras, Steinhauser '06]
 - W and gluon: this talk
- Box contribution still needs to be calculated
- EW gauge invariant only after inclusion of boxes

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
0000	000	00000000		
с I Е	10			

Sample Feynman digrams

Introduction	Hard corrections at $\mathcal{O}(\alpha \alpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
0000	00•	00000000	00	O
Matching	coefficient			

Matching condition

$$\Gamma^{\mu} = \gamma^{\mu} F_1 + \frac{[\gamma^{\mu}, \underline{A}]}{4m_t} F_2 + \frac{\underline{A} q^{\mu}}{q^2} F_3$$
$$\bar{t} \Gamma^i t = (\underbrace{F_1 + F_2}_{\Gamma_v}) \left[\psi^{\dagger} \sigma^i \chi \right] + \dots$$
$$Z_{A/Z} Z_2^{OS} \Gamma_v = \underline{c_v} (M_W, m_t) \tilde{Z}_2 \tilde{Z}_v^{-1} \tilde{\Gamma}_v$$

- ullet time like component vanishes up to higher orders in v
- $\bullet\,$ threashold expansion used to identify hard contributions contained in c_v

$$\rightarrow q_1^2 = q_2^2 = m_t^2, \ q^2 = (q_1 + q_2)^2 = 4m_t^2, \ q_1 = q_2 = q/2$$

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
		00000000		
Generic T	opologies			

- after projecting out form factors: scalar integrals
- two mass scales: M_W, m_t
- many different mass configurations

Integration By Parts

$$\int d^{2d}\ell_{1,2} \, \frac{d}{d\ell_i^{\mu}} \, p^{\mu} \, I\left(M_W, m_t\right) = 0$$

• use relations to reduce integrals to master integrals

Introduction Hard	corrections at $\mathcal{O}(\alpha \alpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
		00000000		

Feynman diagrams

- generated with QGRAF [Nogueira '91]
- various topologies are identified with q2e and exp [Harlander '97, Seidensticker '99]

Laporta Algorithm [Laporta '96]

- Crusher: Implementation written in C++ [Marquard, DS '06]
- uses GiNaC for simple manipulations
- coefficient simplification done with Fermat
 ~> interface from [Tentyukov '06]
- automated generation of the IBP identities
- complete symmetrization of the diagrams
- use of multiprocessor environment

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$.	Scalar Integrals	Results	Conclusion and Outlook
0000		00●000000	00	O
Master In	tegrals			

- differential equation at d = 4; some subtoplogies neglected
- no analytic result for MI's in terms of HPL's
- initial conditions known for some integrals

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
0000	000	00000000	00	
Calculatio	on of Master Integ	rals as series	in z	

Ansatz for MI's

$$\mathrm{MI} = \sum c_{ijk} \varepsilon^i z^j \ln^k z$$

- integrals with less lines are assumed to be known
- expand differential equation in ε and z
 → reduction to an algebraic system for c_{ijk}
- in every order in ε one constant c_{ijk} cannot be determined \rightsquigarrow initial condition at z=0
- ullet expansion up to $\mathcal{O}(z^{10})$ calculated

Introduction	Hard corrections at ${\cal O}(lpha lpha_s)$ 000	Scalar Integrals	Results	Conclusion and Outlook
0000		00000●000	00	O
Solution f	for MI			

$$= \frac{1}{4}\pi^{2}\ln 2 - 2\ln^{3} 2 - \frac{1}{3}\pi^{2}\ln 3 + 2\ln^{2} 2\ln 3 - \ln 2\ln^{2} 3 + \frac{\ln^{3} 3}{3}$$
$$- \operatorname{Li}_{3}(-2) + \frac{1}{2}\operatorname{Li}_{3}\left(\frac{1}{4}\right) - 2\operatorname{Li}_{3}\left(\frac{2}{3}\right) + \operatorname{Li}_{3}\left(\frac{3}{4}\right) + \frac{21\zeta(3)}{8}$$
$$- i\pi\left(\frac{\pi^{2}}{12} + \frac{1}{2}\ln^{2} 2\right) + z\left[i\pi\left(\frac{1}{2} - \frac{1}{4}\ln 2 + \frac{3}{4}\ln 3 - \frac{3}{8}\ln z\right) + \frac{3}{8}\ln 3\ln z - \frac{3\ln^{2} 3}{8} + \frac{1}{4}\ln 2\ln 3 - \frac{\ln^{2} 2}{4} - \ln 2$$
$$+ \frac{17\pi^{2}}{48} - \frac{1}{8}\operatorname{Li}_{2}\left(\frac{3}{4}\right)\right] + \mathcal{O}(z^{2})$$

- ullet initial condition only affects leading term in z
- higher order in z: constants from solutions of subtopologies
- for two Master Integrals no initial condition is needed
- some MI's could be obtained analytically

Introduction	Hard corrections at ${\cal O}(lpha lpha_s)$ 000	Scalar Integrals	Results	Conclusion and Outlook
0000		0000000000	00	O
Initial cor	ndition for MI's			

• no solution for four integrals at z = 0 found in literature

Mellin-Barnes

$$\frac{1}{\left(K-M\right)^{\lambda}} = \frac{1}{\left(K\right)^{\lambda}} \frac{1}{\Gamma(\lambda)} \frac{1}{2\pi i} \int_{\gamma} ds \left(-\frac{M}{K}\right)^{s} \Gamma(-s) \Gamma(\lambda+s)$$

- trade massive propagator for massless one
- simplify Feynman integral representations
- we use AMBRE to get MB representation[Gluza,Kajda,Riemann '07]
- \rightsquigarrow at most 6-dimensional representation
 - inconsistent results when using MB.m [Czakon '05] for different representations

Introduction	Hard corrections at ${\cal O}(lpha lpha_s)$ 000	Scalar Integrals	Results	Conclusion and Outlook
0000		000000000	00	O
Mellin Barnes integration				

$$= \int_{-\frac{1}{4}-i\infty}^{-\frac{1}{4}+i\infty} \frac{dz_1}{2\pi i} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} \frac{dz_2}{2\pi i} e^{i\pi z_1} 4^{-z_2} \times \frac{\Gamma(-z_1+1)\Gamma(-z_1) \left[\Gamma(-z_2+1)\right]^2 \Gamma(-z_1-z_2+2)\Gamma(z_1-z_2)\Gamma(z_2)^2}{\Gamma(-z_1+2)^2 \Gamma(-2z_2+2)} + \dots$$

Asymptotic behaviour of the Γ -function

$$\Gamma(a\pm ib) \stackrel{b\to\infty}{\simeq} \sqrt{2\pi} e^{\pm i\frac{\pi}{4}(2a-1)} e^{\pm ib(\ln b-1)} e^{-\frac{b\pi}{2}} b^{a-\frac{1}{2}}$$

• no exponential falloff for $Im(z_2) = 0$, $Im(z_1) < 0$

• power-law dropoff

Behaviour for large negative $\text{Im}(z_1)$: $|z_1|^{-\frac{17}{25}}$ After taking two residues in z_2 to the right: $|z_1|^{-\frac{67}{25}}$ \rightarrow Integrand converges well enough to be integrated

 numerical Monte-Carlo integration done with DIVONNE instead of VEGAS

- z-range for 165 GeV $< m_t <$ 175 GeV
- rapid convergence in the physical range
- correction from $\hat{\Gamma}_{A,W}^{t,(1,1)}$ to R: 0.1%

$$\begin{split} \hat{\Gamma}_{A,H}^{t,(1,0)} &= 21.1 \times 10^{-3} (10.6 \times 10^{-3}) \text{ for } M_H = 120 (200) \text{ GeV} \\ \hat{\Gamma}_{A,W}^{t,(1,0)} &= 3.0 \times 10^{-3} \\ \hat{\Gamma}_{A,Z}^{t,(1,0)} &= 1.7 \times 10^{-3} \\ \hat{\Gamma}_{A,H}^{t,(1,1)} &= -17.6 \times 10^{-3} (-6.6 \times 10^{-3}) \text{ for } M_H = 120 (200) \text{ GeV} \\ \hat{\Gamma}_{A,W}^{t,(1,1)} &= 0.2 \times 10^{-3} \\ \hat{\Gamma}_{A,Z}^{t,(1,1)} &= -1.0 \times 10^{-3} \end{split}$$

strong cancellation between one and two loop contributions

imaginary part not taken into account
 → cuts not corresponding to tt̄X final states have to be omitted [Hoang, Reisser '04]

Introduction	Hard corrections at $\mathcal{O}(lpha lpha_s)$	Scalar Integrals	Results	Conclusion and Outlook
				•

- \bullet last missing piece of hard $\gamma t\bar{t}-{\rm vertex}$ corrections at order $\alpha\alpha_s$ calculated
- perturbation theory works well in the EW-sector
- $\bullet\,$ contribution amounts to 0.1% \ll 3% aimed for theoretical predictions
- troublesome MI's at threashold can be handled

- two-loop box-diagrams still missing
- consistent treatment of imaginary part
- finite width effects, EW effects in NRQCD
- hard corrections at NNNLO