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Introduction
[ leJe]e]

o(ete” — ttX) near \/s = 2my

cross section at LO

2
Utlio ~ LMV (% + %) Im(TJuJy>

o I'y > Aqcp — non-pertubative effects are strongly supressed

@ simultanious determination of my, as, I'y [Martinez, Miquel '02]

Expansion in a5 ~ v at threshold (NRQCD)
@ hard matching corrections
@ summing up terms (%)n
~ solving Schrodinger equation with static QCD—potential
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Plots from [Beneke, Kiyo, Schuller '08]

@ NNLO calculations as big as NLO ones
@ ILC: uncertainty < 100 MeV for m; can be obtained

@ theory: 60 /0 < 3% — NNNLO calcualation needed

2

5 — aa corrections are NNNLO

@ o~
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o QCD:
@ NNNLO bound state corrections
[Beneke, Kiyo, Schuller '08] [Beneke, Kiyo, Penin '07]
[Beneke, Kiyo '08]
o 3-loop hard corrections
e n; [Marquard, Piclum, DS, Steinhauser '06]
@ ny, singlet: in preparation
@ partial NNLL RG improvement [Hoang '03; Pineda, Signer '06]
(my > p ~ m > E ~ muo?)
o EW:
o « [Grzadkowski, Kiihn, Krawczyk, Stuart '87; Guth, Kithn '92;
Hoang, Reifer '05]
o 2-loop aag
o hard Z/H and gluon [Eiras, Steinhauser '06]
o hard W and gluon corrections [Kiyo, DS, Steinhauser '08]
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Outline

© Hard corrections at O(aa)

© Scalar Integrals

© Results



Hard corrections at O(aas)
@00

Hard corrections at O(au;)

® ['cve, L, z: trivial/simple

) th
@ Z/H and gluon [Eiras, Steinhauser '06]
@ W and gluon: this talk

@ Box contribution still needs to be calculated

@ EW gauge invariant only after inclusion of boxes




Hard corrections at O(aas
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Sample Feynman digrams




Hard corrections at O(aas)
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Matching coefficient

Matching condition
=P + Bl m 4+ A4 1y

tTit = (Fy + B) [vlo'x] + ...
Ty

ZA/zZQSrv = ¢ (M, my) ZoZ; 1T,

@ time like component vanishes up to higher orders in v
@ threashold expansion used to identify hard contributions
contained in ¢,

@G =@ =m} ¢ = +q@)?=4m} q =q =q/2



Scalar Integrals
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Generic Topologies

@ after projecting out form factors: scalar integrals
@ two mass scales: My, my

@ many different mass configurations

Integration By Parts

d
/d2d£172 WP#I(JWVV;mt) = 0

@ use relations to reduce integrals to master integrals



Scalar Integrals
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Feynman diagrams
@ generated with QGRAF [Nogueira '91]

@ various topologies are identified with
q2e and exp [Harlander '97, Seidensticker '99]

Laporta Algorithm [Laporta '96]
@ Crusher: Implementation written in C++ [Marquard, DS '06]
@ uses GiNaC for simple manipulations

o coefficient simplification done with Fermat
~~ interface from [Tentyukov '06]

@ automated generation of the IBP identities
@ complete symmetrization of the diagrams

@ use of multiprocessor environment
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Master Integrals




Scalar Integrals
[e]o]e] lelele]e]e]

Differential Equation Method

d 1 1
= d2d&7:/d2d&7+...
dz (2—z)-- (2—2)7%..
M2,
g =W
my
e 1 1 1 d? 0
P 7N T ey Y ey 1 A
a7 B 5 3 1
= . /7 7 \12(z—1) 8z 24(z—4)

1 3 1 1
+<_4<271) TR oo 8(274)) e e

o differential equation at d = 4; some subtoplogies neglected
@ no analytic result for MI's in terms of HPL's
@ initial conditions known for some integrals



Scalar Integrals
[e]e]ele] lele]e]e]

Calculation of Master Integrals as series in z

Ansatz for Ml’s

MI = Z cz-jkeizj In” 2

@ integrals with less lines are assumed to be known

@ expand differential equation in € and z
~+ reduction to an algebraic system for c;j,

@ in every order in € one constant c;j;, cannot be determined
~ initial condition at 2 =0

@ expansion up to O(z'%) calculated



Scalar Integrals
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Solution for Ml

1 1 In® 3
— >= - Z7r21r12—21n32—§7r21n3+21r1221n3—1n21n?3+nT

) 1. /1 /2 C 73\ 21¢(3)
—Lig(=2)+ =Lig (= ) —2Lig (=) + Liz ( =
i3 ( )+2 13(4) 13(3)+ |3(4)+ 5
2 1 1 1 3
—z'7r(71r—2+§1n22)+z[iw(§—zln2+21n3—§lnz)

In? 1 In?2
3ln 3+—1n21n3——n —In2
4 4

3
+ —In3Inz —
8

1772 1 3
——Lia (= O(z2
8 82 (4” +06E)

@ initial condition only affects leading term in 2

@ higher order in z: constants from solutions of subtopologies

@ for two Master Integrals no initial condition is needed

@ some Ml's could be obtained analytically



Scalar Integrals
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Initial condition for Ml's

@ no solution for four integrals at z = 0 found in literature

Mellin—Barnes

Lo 11 i[yds(—%)sf(—s)ﬂ)\—i—s)

(K —M)*  (K)*T(A) 2mi

@ trade massive propagator for massless one

@ simplify Feynman integral representations

@ we use AMBRE to get MB representation[Gluza,Kajda,Riemann "07]
~» at most 6-dimensional representation

@ inconsistent results when using MB.m [Czakon '05] for different
representations



Scalar Integrals
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Mellin Barnes integration

/*4+zoo dz1/ 2+zoo dZQ ”er4
1_ico 2mi — L —ico omi

F( 21 + 1 F( 21) [F( zo + 1)} F(—Zl — 2o + 2)1"(7;1 — ZQ)F(22)2
F( 21 + 2)2F(—222 + 2)

Asymptotic behaviour of the '—function

(a:l:zb) \/ﬂ +i% (2a—1) pib(Inb—1) o~ 4 pa—3

@ no exponential falloff for Im(z2) =0, Im(z1) <0
@ power—law dropoff

Behaviour for large negative Im(z1): ]21\

After taking two residues in z5 to the rlght. |21 " 25
~~ Integrand converges well enough to be integrated



t t t t Scalar Integrals t dut
O0000000e
i 2\ 2¢€
, I 1 1/5 . ) P
— = — — + — (= —2In2+4m | —4.81543683(7
) <m?) [262 e<2 s

+ 4ir(1 — In 2)}

J mo (p2N\*T 1 1/5 . 19 2372 5In22 3In3
— L sa tolgTim) g - - -

m? 2¢2 24 2 2

5 5. (3\

+ 2 In21n3 - =L <Z> n %(11 — 51n2) — € 16.690539(1)
4 2 211n22

—m<—?5+3zz +3In2— 2% 4 61n3 + 2Lix(—2)

2.704628(4) — 5.167709(4)%

)/ =0 2.70543(6) — 1.91431(6)d

@ numerical Monte—Carlo integration done with DIVONNE instead
of VEGAS



Results

[ Je]
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@ z-range for 165 GeV < m; < 175 GeV

@ rapid convergence in the physical range

@ correction from ffj‘(é[’,l) to R: 0.1%
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Comparison of known hard EW and EW xQCD corrections

0407 =211 x 1073 (10.6 x 107%)  for M = 120 (200) GeV

40 = 3.0 x 1078
t,(1,0) _
Az =1.7x1073

P = —17.6 x 1073 (=6.6 x 1072)  for My = 120 (200) GeV

’1>

M0 =02 x 1078

400 = —1.0x 1073

@ strong cancellation between one and two loop contributions

@ imaginary part not taken into account
~+ cuts not corresponding to ttX final states have to be

omitted [Hoang, Reisser '04]



Conclusion and Outlook

@ last missing piece of hard ~ti—vertex corrections at order ca
calculated

@ perturbation theory works well in the EW-sector

@ contribution amounts to 0.1% < 3% aimed for theoretical
predictions

@ troublesome MI's at threashold can be handled

two—loop box—diagrams still missing
consistent treatment of imaginary part
finite width effects, EW effects in NRQCD
hard corrections at NNNLO
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