Applying the POWHEG method to top-pair production and decay at the ILC

Oluseyi Latunde-Dada seyi@hep.phy.cam.ac.uk

> HEP theory group Cavendish Laboratory Cambridge,UK

19th November 2008

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- An introduction to the POWHEG NLO method
- Applications of the POWHEG method
- Top-pair production and decay at the ILC (arXiv:0806.4560)
- Plots
- Summary

An introduction to the POWHEG NLO method Parton shower (PS) vs. Matrix Element (ME) Generators

- An ME generator calculates the exact N^(>0)LO cross-section and distributes events according to the matrix element with partons in the final state e.g. HELAC, Madgraph whilst,
- a PS generator, starting from an LO configuration, simulates enhanced QCD radiations from the LO partons to all orders with the use of the Sudakov form factor and implements a hadronization model for the final states e.g. Herwig++, Pythia.
- With this information, we can draw up the following table illustrating the merits (M) and drawbacks (D) of both generators:

PS generators	ME generators
Resums leading logarithmic	Can only go up to
contributions to all orders (M)	$N^{\sim 6}$ LO (D)
Lleves high multiplicity	
Hence, high multiplicity	and low multiplicity
nadrons in the final state (M)	partonic final states (D)
Works well in regions of	Works well in regions of
low relative p_T (M & D)	high relative p_T (M & D)

Total rate is accurate to LO (D) Total rate is accurate to $N^{(>0)}LO$ (M)

Aside: Most PS generators attempt to include NLO corrections via a method called the Matrix Element correction which

• corrects the hardest shower emission so far to the exact matrix element and populates the high p_T regions according to the NLO cross-section.

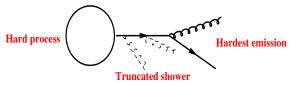
However, the total rate is still only accurate to LO and virtual corrections are not fully taken care of.

Getting the best of both worlds at NLO

Two state-of-the art methods solve this problem:

- The earlier and more familiar Monte Carlo at NLO (MC@NLO) method (hep-ph/0204244) and the
- relatively new Positive Weighted Hardest Emission Generation (POWHEG) method (hep-ph/0409146).

Both methods


- have total rates accurate to NLO,
- treat hard emissions as in ME generators,
- treat soft and collinear emissions as in PS generators,
- and generate a set of fully exclusive events which can be interfaced with a hadronization model.

In this talk, we will focus on the description and applications of the POWHEG method in conjunction with the PS generator, Herwig++.

Positive Weighted Hardest Emission Generation

The attributes of the POWHEG method are as follows:

- It generates the hardest emission in the shower first to NLO accuracy using a modified Sudakov form factor.
- For angular ordered showers like Herwig++, it includes a truncated shower of soft, wide angled emissions from the hard scale to the scale of the hardest emission. This maintains the correct soft emission pattern.

- It then showers the resulting partons subject to a p_T veto to ensure that no harder emissions are generated.
- Unlike MC@NLO, it is independent of the PS generator used.

-

• Unlike MC@NLO, all events have positive weight.

The parton shower hardest emission cross-section

 For a single parton, the cross-section for the hardest emission with transverse momentum *p*_T is given by,

$$d\sigma = d\sigma_{\rm B} \left[\Delta_{\rm V}(0) + \Delta_{\rm V}(\rho_{\rm T}) \frac{\alpha_{\rm S}}{2\pi} P dz \frac{dq^2}{q^2}
ight],$$
 (1)

where *P* is the splitting function for the hardest emission and $\Delta_V(p_T)$ is the Sudakov form factor for no emissions with $k_T > p_T$ which is given by

$$\Delta_{\rm V}(\rho_{\rm T}) = \exp\left[-\int dz \frac{dq^2}{q^2} \frac{\alpha_{\rm S}}{2\pi} P\Theta(k_{\rm T}-\rho_{\rm T})\right] \qquad (2)$$

• The cross-section (1) expanded to order α_s gives

$$d\sigma = d\sigma_{\rm B} \left[\left\{ 1 - \int \frac{\alpha_{\rm S}}{2\pi} P dz \frac{dq^2}{q^2} \right\} + \frac{\alpha_{\rm S}}{2\pi} P dz \frac{dq^2}{q^2} \right] .$$
 (3)

 The POWHEG method aims to substitute (3) with the exact NLO result within the parton shower.

Correcting to the exact NLO cross-section

The exact NLO cross-section can be written as

$$d\sigma_{
m NLO} = d\sigma_{
m B} + d\sigma_{
m V} + d\sigma_{
m R} \equiv d\sigma_{
m B} + d\sigma_{
m V} + d\sigma_{
m B} dr \mathcal{M}$$
. (4)

• Adding and subtracting $d\sigma_{\rm B} \int_{\delta} dr (\mathcal{M} - \mathcal{C})$ we get

$$d\sigma_{\rm NLO} = d\sigma_{\rm B} + d\sigma_{\rm V} + d\sigma_{\rm B} \int_{\delta} dr (\mathcal{M} - \mathcal{C}) + d\sigma_{\rm B} dr \mathcal{M} - d\sigma_{\rm B} \int_{\delta} dr (\mathcal{M} - \mathcal{C}) .$$
(5)

where ${\cal C}$ is a counter-term and δ is the subtraction region.

This can be rearranged to give

$$d\sigma_{\rm NLO} = d\sigma_{\rm V'} + d\sigma_{\rm B} \int_{\delta} dr (\mathcal{M} - \mathcal{C}) + d\sigma_{\rm B} \left[\left\{ 1 - \int_{\delta} dr \mathcal{M} \right\} + \mathcal{M} dr \right]$$
(6)

with $d\sigma_{V'} = d\sigma_V + d\sigma_B \int_{\delta} dr C$ now finite.

Correcting to the exact NLO cross-section

Comparing (6) with (3) below,

$$d\sigma = d\sigma_{\rm B} \left[\left\{ 1 - \int rac{lpha_{
m S}}{2\pi} P dz rac{dq^2}{q^2}
ight\} + rac{lpha_{
m S}}{2\pi} P dz rac{dq^2}{q^2}
ight]$$

we can write down an analog of (1) below

$$m{d}\sigma = m{d}\sigma_{
m B} \left[\Delta_{
m V}(0) + \Delta_{
m V}(m{
ho}_{
m T}) rac{lpha_{
m S}}{2\pi} m{
ho} m{d}z rac{m{d}q^2}{q^2}
ight]$$

as

$$d\sigma_{\rm NLO} = d\sigma_{\rm \bar{B}} \left[\Delta_{\rm NLO}(0) + \Delta_{\rm NLO}(\rho_{\rm T}) \mathcal{M} dr \right]$$
(7)

where

$$d\sigma_{\bar{B}} = d\sigma_{B} + d\sigma_{V'} + d\sigma_{B} \int_{\delta} dr (\mathcal{M} - \mathcal{C}) *$$
$$\Delta_{\rm NLO}(\boldsymbol{p}_{\rm T}) = \exp\left[-\int \mathcal{M}\Theta(\boldsymbol{k}_{\rm T} - \boldsymbol{p}_{\rm T})\right] . \tag{8}$$

*Note that in defining $d\sigma_{\rm B}$, we have neglected terms of higher order than $\alpha_{\rm S}$ and if negative, P.T. has broken down.

POWHEG formalism

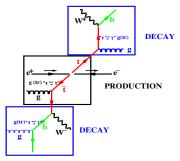
With

$$d\sigma_{\rm NLO} = d\sigma_{\bar{B}} \left[\Delta_{\rm NLO}(0) + \Delta_{\rm NLO}(\rho_{\rm T}) \mathcal{M} dr \right], \qquad (9)$$

the POWHEG method can be applied by

- generating the p_T of the hardest emission and its emission variables r, according to the term in [...], using well known Monte Carlo techniques,
- distributing the underlying Born variables according to $d\sigma_{\bar{B}}$, (This defines the event weight and since it is always positive definite, all event weights are positive)
- for angular ordered showers, implementing a truncated shower of soft emissions between the *hard* scale and the scale of the hardest emission,
- and finally showering the resulting partons as in a PS generator subject to a p_T veto.

Applications of the POWHEG method


The POWHEG method has been applied successfully to the following processes

- *Z* pair hadroproduction: Nason and Ridolfi: hep-ph/0606275
- Heavy flavour production: Frixione, Nason and Ridolfi: arXiv:0707.3088
- e⁺e⁻ annihilation to hadrons: L-D, Gieseke and Webber: hep-ph/0612281
- Drell-Yan vector boson production: Alioli, Nason, Oleari and Re: arXiv:0805.4802; Hamilton, Richardson and Tully:arXiv:0806.0290

A truncated shower of at most one extra gluon emission was implemented for the e^+e^- annihilation process and a full shower was implemented for Drell-Yan production by the latter collaboration.

Both truncated showers were found to give only a slight improvement to the data fits.

Top-pair production and decay at the ILC

- Spin correlations due to polarized incoming leptons are taken into account in the matrix elements, M for the production and decays of the top pairs.
- The narrow width approximation is applied so that production and decay interference can be neglected.
- This independence enables us to apply the method in separate frames: the lab frame for production and the top rest frame for its decay.

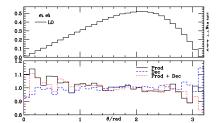
Top-pair production and decay at the ILC

- In the lab frame, the transverse momentum k_T is defined relative to the original $t \overline{t}$ axis whilst in the top rest frame it is relative to the original b W axis.
- The scale range available for production emissions $(\approx \log(\sqrt{s}/m_t))$ and is much less than the range available for decay emissions ($\approx \log(m_t/m_b)$).
- There are two different sources of the decay emissions: one from the top quark before it decays and the other from the *b* quark after the decay.

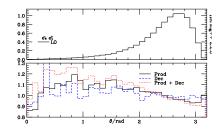
- Hence, there are three different regions for truncated emissions:
 - Before the hardest emission in the production,
 - From the top quark before it decays,
 - Before the hardest emission from the *b* quark.

Top-pair production and decay at the ILC

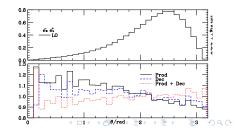
Setting $\sqrt{s} = 500$ GeV and $m_t = 175$ GeV, we considered the following four cases with POWHEG interfaced with Herwig++:


- Leading order (LO) with no POWHEG emissions,
- Only POWHEG emissions in the production process, (Prod),
- Only POWHEG emissions in the decays of the tops, (Dec),
- Both production and decay emissions allowed, (Prod + Dec).

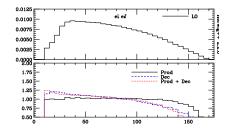
For the two different e^+e^- initial polarizations, we investigated the correlations between the decay products (we consider leptonic decays only for the *W* bosons) and the momentum distributions of the *b* quarks before hadronization.


Plots

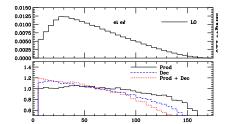
Angle btw decay e^- and t (LR).

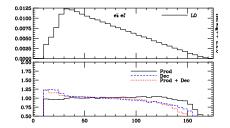

Angle btw decay e^+ and e^- (LR).

Angle btw decay e^- and t (RL).

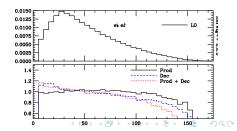


Angle btw decay e^+ and e^- (RL).

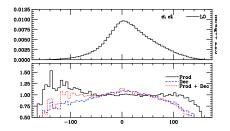



Plots

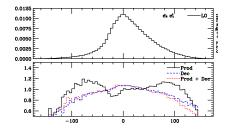
Energy of b quark in lab frame (LR) Energy of b quark in lab frame (RL)



 $p_{\rm T}$ of *b* quark in lab frame (LR)



 $p_{\rm T}$ of *b* quark in lab frame (RL)



Plots

Longitudinal momentum of *b* quark in lab frame (LR)

Longitudinal momentum of *b* quark in lab frame (RL)

・ロット (雪) (日) (日)

ъ

Summary

- NLO improvements of parton showers are essential for near accurate predictions of angular correlations and momentum distributions at future colliders.
- The POWHEG method achieves this by distributing the hardest emission according to the NLO matrix element and yields events with positive weights. For angular ordered showers, the addition of a truncated shower is required.
- The method, though not very straightforward to apply, has demonstrated success in comparison with existing collider data.
- In this talk, we have, with confidence, extended this to top-pair production and decay at the ILC and made predictions for some distributions in comparison to leading order predictions.