
A New h-> ng
Parton Shower

M. E. Peskin
November 2008

Today, many people are interesting in methods for merging
partons showers at low pT with exact QCD calculations for the
hardest jets .

Much of this development is driven by the problems of the
Tevatron and the LHC. Our ability to understand physics at
hadron colliders is limited by our understanding of the shapes
of Standard Model backgrounds.

New physics appears at large values of

 missing energy, HT, number of jets, ...

These are precisely the regions treated poorly by standard
parton shower algorithms.

There are many approaches to this problem with somewhat
different ambitions. All are versions of Òmatrix element/
parton showerÓ matching:

 correction of high-order matrix element calculations
 for consistency with subsequent parton showering

 ALPGEN, MADEVENT, SHERPA, HELAC
 Catani-Krauss-Kuhn-Webber

 correction of parton showers to incorporate exact 1-loop
 calculations

 MC@NLO Frixione, Webber, Nason

 improvement of parton shower algorithms using QCD
 resummation in the soft and collinear regions

 Becher + Schwartz

This is the version of the matching problem that I will be
concerned with here:

Can one write a parton shower algorithm that can
systematically incorporate QCD tree amplitudes,

so that n-jet emission automatically has the shape that
those amplitudes predict?

I will not attempt to get the normalization of cross sections
right. That requires loop calculations. I will try to
efficiently generate weight-1 events. For speed of
computation, my ÒexactÓ amplitudes will be leading-color
only.

Bauer, Tackmann, and Thaler have attacked this same problem,
and are much further along: (GenEV a)

Giele, Kosower, and
Skands also have a
new, more systematic
approach to parton
showers (VINCIA).

My approach is built on the answers to three questions:

1. How can we rapidly produce exact QCD amplitudes ?

2. These amplitudes refer to points in n-particle phase
 space. How do we parametrize exact phase space
 so that it looks like a parton shower ?

3. The use of these amplitudes requires reweighting and
 acceptance/rejection in a parton shower. How is this
 done ?

In this talk, I will discuss the shower in . h0 → ng

To generate tree amplitudes, I use the Britto-Cachazo-Feng
recursion formula for on-shell amplitudes:

I am content with amplitudes at the leading order in Nc.

The BCF formula recursively breaks amplitudes down (numerically ,
on the fly) to the MHV result (Dixon, Glover, Khoze)

and the conjugate, with all g(-).

iM(h0 → g+
1 g+

2 · · · g+
n) = ign−2C

m4
h

〈12〉〈23〉 · · · 〈N1〉

iM(1 · · ·n) =
!

splits

iM(b + 1 · · · öi · · · a− 1 − öQ)

· 1
sa···b

· iM(a · · · öj · · · b öQ)

Duhr, Hoche, and Maltoni and Dinsdale, Ternick, and
Weinzierl (DTW) have investigated how to do this. The
latter group has written an especially fast code for
multigluon amplitudes. Both groups conclude that, if
you are sophisticated, BCF recursion has no advantage
over the more venerable Berends-Giele recursion.
However, BCF recursion can be implemented to give fast
computations with a very simple code.

Our code is not as fast as WeinzierlÕs, but we can
compute h-> 8 g amplitudes in 0.1 msec. That is quite
fast enough.

Some fun C++ programming is involved. In our approach, we use
as the basic object a C++ class called a bispinor. This holds 8
complex numbers

and implements methods that derive the vector components
from the spinor components and vice versa.

It is important not to lose phase information in converting
vectors to bispinors. Having obtained with some phase,
we use

Then the composite object preserves the original phases.

DTW emphasize the importance of memory management. So,
actually, we replace the bispinor class by a cone class that holds
all of the bispinors needed to compute the desired amplitude.

p± = p0 ± p1 q± = p2 ± ip3

p〉 = uR(p) p] = uL(p)

u1
R

u1
L =

q!

u1
R

u2
L =

p+

u1
R

u2
R =

q+

p+ u1
R

p! [p

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

 0.001

 0.01

 0 100 200 300 400 500

 d

 s
ig

m
a/

 d
 E

_j

 (
fb

/G
eV

)

 E(jet)

e+e− ! q + 4g + qparton energies in

Once we have the amplitudes, we need to integrate them over
phase space. To do this, we need to efficiently generate
multiparticle phase space, enhanced in the region where the
QCD denominators are large.

An effective trick has been introduced by Draggiotis, van
Hameren, and Kleiss as the basis of their SARGE algorithm

Start with two back-to-back lightlike vectors. Add a third
lightlike vector

Then boost and rescale to the original CM frame and energy.

p3 = ξ1p1 + ξ2p2 + p⊥

To add the fourth vector , pick two neighbors , boost these
back-to-back, add a vector as before, and then boost the
entire system back to the CM frame.

Effectively , the entire event recoils when a new vector is
added.

The logarthmic integral over the parameters reproduces massless
phase space

Applying this operation repeatedly , we build up phase space with
all of the QCD denominators of the color-ordered amplitude for
emission of final-state radiation.

!
d3p3

(2π)22p3

2p1 áp2

2p1 áp3 2p3 áp2
=

1
(4π)2

!
dξ1

ξ1

!
dξ2

ξ2

!
dφ

2π

∫
dΠn

1
2p1 áp2 2p2 áp3 ááá2pn áp1

=
1

8πQ4

∏

i

[
1

(4π)2

∫
dξ1i

ξ1i

∫
dξ2i

ξ2i

∫
dφ

2π

]

This is an exact formula for massless phase space with QCD
denominators, but only if we integrate over every point in
phase space exactly once.

Draggiotis, van Hameren, and Kleiss suggested adding the
vectors 1, 2, 3 in fixed (color) order . This requires very large
values for the to reproduce some phase space
configurations.

An alternative approach is to choose arbitrarily at each step
one interval in which to insert a new vector . We call the set of
such choices a chamber. It is then necessary to define the
limits of each chamber so that the full set of chambers tiles
phase space.

ξi

Here is a useful definition of a chamber:

Let the nth vector be inserted between 1 and 2. Then allow
all values of such that

 is the smallest invariant mass of two neighbors,
 and

Reversing the inequality defines a
second chamber in which n is radiated
on the left side of 1.

These prescriptions put reasonable
upper limits on the integrals.

The ordering of virtualities is
similar to the ordering in a parton shower . In fact, we can
identify with the evolution variable of a parton shower .

s1n

sn2 < s13

s1n
sn2

s31

sij

ξ1j

! 1, ! 2, "

sij

s1n
sn2

s31

We look at the emission in the chamber

between 1 and 2, on the side of 1

as an emission from the gluon 1
in the antenna (in the sense of VINCIA)
of gluons 1 and 2.

At each stage in the shower, we choose an antenna and
an emission side at random.

The correspondence to Altarelli-P arisi is

and

(1− z) =
1

(1 + ! 1 + ! 2)
!

d! 2

! 2

!
d! 1

! 1
!

!
dQ2

Q2

!
dz

z(1 " z)

We also choose definite values of the gluon helicities.

We can exactly solve for emissions with the measure

with the leading-log formula for

The gluon splitting
functions are:

We implement the numerators as a weight applied to each
emission.

!
d! 2

! 2

!
d! 1

! 1

!
d"
2#

á
3$s(! 2s12)

2#

αs(Q2)

P (g+ → g+g+) =
1

z(1− z)

P (g+ → g−g+) =
(1− z)4

z(1− z)

P (g+ → g+g−) =
z4

z(1− z)

More precisely, each emission then receives a weight , equal
to the numerator of the splitting function times zero if the chosen
kinematics violates the chamber conditions.

In most Monte Carlo programs, we generate weight-1 events by
hit-or-miss. Arrange the weights so that, always, . For
each generated event, choose a random number such that
 . Accept the event if .

In a parton shower, this method must be modified. It is obviously
not correct to reject the whole event if in one parton
emission.

w(x)

w(x) < 1

0 < R < 1
R

w < R

w > R

The PYTHIA manual gives a simple solution to this problem.

Let be the evolution variable. Let
be the emission probability for one parton in a shower that
we can model explicitly (e.g. all numerators = 1, no chamber
inequalities), and let be the emission probability for
the true shower. In general, depend on all of the
kinematic variables of the emission. The weight is

The correct probability for emitting the next parton obeys

for which the solution is

 is called the Sudakov factor . To choose the next , we
would solve: - but typically this is too
hard to do.

t = log(m2
h/sij)

f (t)

g(t)

f , g

w = f /g < 1

dP
dt

= f (t) · P(t)

P (t) = e−S(t) S(t) =
∫ t

0
dt′f (t′)

S(t) t
log(1/R) = S(t)

Choose so that we can solve exactly the corresponding
equation for its Sudakov factor . Then, proceed as follows:

Work forward in . Starting from , choose the next
emission point using the probability .

Compute and accept the emission if .

If this fails, use as the starting point and go farther forward,
choosing the emission point using the probability .
Accept this emission with probability .

Continue as needed, stopping when reaches (minimum
virtuality).

Add up all possible sequences of emissions and acceptance or
rejections. The sum is equal to !

t t = 0

w > R

g(t)

g(t)

w = f/g

t1

t1
t2 g(t)

w = f/g

t tmax

P (t) = exp[−S(t)]

For a simple parton shower, we choose for the numerators of the
splitting functions:

times zero if the chosen point violates the chamber inequalities.

However, we could also use more complicated weights. The
prescription

reweights the emissions to the probabilities given by exact tree-
level matrix elements. W e can use this prescription as long as
our computer has the strength to compute the matrix elements.

The two prescriptions agree for h-> 3 g, so the simple shower is
exact at this level. It is quite accurate at higher levels.

1 ,
1

(1 + ξ1 + ξ2)4 ,
ξ4

2

(1 + ξ1 + ξ2)4

w =
|M(h ! ng)|2/ |M(h ! (n " 1)g)|2

(2p1 · p2)/ (2p1 · pn)(2pn · p2)

In principle, our code allows the maximum level at which
exact matrix elements are used to be set to any value.
The user can choose this value, depending on her patience.

The timing (for the plots I will show) is :

 0.7 msec/event for the simple shower

 1.7 msec/event using 6 gluon matrix elements

 7.6 msec/event using 8 gluon matrix elements

Here are some results from the program:

m(h) = 1000 GeV ; evolve to 2 GeV

number of generated partons

(simple shower)

Thrust distribution

h to 3g

light - simple shower
heavy - 6g matrix elements

VINCIA

To see better what changes with a more exact
calculation, cluster the partons with ycut = 0.0001
(cluster mass of 10 GeV), and plot the energies of
the 5 highest-energy clusters.

simple shower (light) vs. 6 gluon (dark)

6 gluon (light) vs. 8 gluon (dark)

Conclusions:

This is a proof of principle for a new way to incorporate exact
matrix elements into a parton shower . Only the simplest
situation has been implemented so far .

In principle, the method generalizes to processes with massive
particles in the final state. I apologize that the shower in

is not ready for presentation at this conference.

The generalization to initial-state radiation showers is even
more virtual.

Still, there is promise that this might be an interesting tool for
modeling multijet QCD processes.

e+ e! ! tt + ng

