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Today, many people are interesting in methods for merging 
partons showers at low pT with exact QCD calculations for the 
hardest jets.  

Much of this development is driven by the problems of the 
Tevatron and the LHC. Our ability to understand physics at 
hadron colliders is limited by our understanding of the shapes 
of Standard Model backgrounds.

New physics appears at large values of 

    missing energy, HT, number of jets, ...

These are precisely the regions treated poorly by standard 
parton shower algorithms.





There are many approaches to this problem with somewhat 
different ambitions.  All are versions of “matrix element/
parton shower” matching:

    correction of high-order matrix element calculations 
        for consistency with subsequent parton showering

              ALPGEN, MADEVENT, SHERPA, HELAC
                  Catani-Krauss-Kuhn-Webber

    correction of parton showers to incorporate exact 1-loop
        calculations 

          MC@NLO    Frixione, Webber, Nason

    improvement of parton shower algorithms using QCD
        resummation in the soft and collinear regions

                        Becher + Schwartz



This is the version of the matching problem that I will be 
concerned with here:

Can one write a parton shower algorithm that can 
systematically incorporate QCD tree amplitudes,

so that n-jet emission automatically has the shape that 
those amplitudes predict?

I will not attempt to get the normalization of cross sections 
right.  That requires loop calculations.  I will try to 
efficiently generate weight-1 events.   For speed of 
computation, my “exact” amplitudes will be leading-color 
only.



Bauer, Tackmann, and Thaler have attacked this same problem,
and are much further along:      (GenEVa)

Giele, Kosower, and 
Skands also have a 
new, more systematic 
approach to parton
showers   (VINCIA).



My approach is built on the answers to three questions:

1.  How can we rapidly produce exact QCD amplitudes ?

2.  These amplitudes refer to points in n-particle phase
          space.  How do we parametrize exact phase space 
              so that it looks like a parton shower ?

3.  The use of these amplitudes requires reweighting and 
        acceptance/rejection in a parton shower.  How is this
                done ?

In this talk, I will discuss the shower in                  .  h0 → ng



To generate tree amplitudes, I use the Britto-Cachazo-Feng 
recursion formula for on-shell amplitudes:

I am content with amplitudes at the leading order in Nc.

The BCF formula recursively breaks amplitudes down (numerically, 
on the fly) to the MHV result   (Dixon, Glover, Khoze)

and the conjugate, with all g(-).
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Duhr, Hoche, and Maltoni and Dinsdale, Ternick, and 
Weinzierl (DTW) have investigated how to do this.  The 
latter group has written an especially fast code for 
multigluon amplitudes.  Both groups conclude that, if 
you are sophisticated, BCF recursion has no advantage 
over the more venerable Berends-Giele recursion.  
However, BCF recursion can be implemented to give fast 
computations with a very simple code. 

Our code is not as fast as Weinzierl’s, but we can 
compute  h-> 8 g amplitudes in 0.1 msec.  That is quite
fast enough.



Some fun C++ programming is involved.  In our approach, we use 
as the basic object a C++ class called a bispinor.  This holds 8 
complex numbers

and implements methods that derive the vector components 
from the spinor components and vice versa.  

It is important not to lose phase information in converting 
vectors to bispinors.  Having obtained       with some phase, 
we use 

Then the composite object         preserves the original phases.

DTW emphasize the importance of memory management.  So, 
actually, we replace the bispinor class by a cone class that holds 
all of the bispinors needed to compute the desired amplitude.
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e+e− → q + 4g + qparton energies in 



Once we have the amplitudes, we need to integrate them over 
phase space.  To do this, we need to efficiently generate 
multiparticle phase space, enhanced in the region where the 
QCD denominators are large.

An effective trick has been introduced by Draggiotis, van 
Hameren, and Kleiss as the basis of their SARGE algorithm

Start with two back-to-back lightlike vectors.   Add a third 
lightlike vector

Then boost and rescale to the original CM frame and energy.  

p3 = ξ1p1 + ξ2p2 + p⊥



To add the fourth vector, pick two neighbors, boost these 
back-to-back, add a vector as before, and then boost the 
entire system back to the CM frame.

Effectively, the entire event recoils when a new vector is 
added.



The logarthmic integral over the parameters reproduces massless 
phase space

Applying this operation repeatedly, we build up phase space with 
all of the QCD denominators of the color-ordered amplitude for 
emission of final-state radiation.   
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This is an exact formula for massless phase space with QCD 
denominators, but only if we integrate over every point in 
phase space exactly once.

Draggiotis, van Hameren, and Kleiss suggested adding the 
vectors 1, 2, 3 in fixed (color) order.  This requires very large 
values for the     to reproduce some phase space 
configurations.

An alternative approach is to choose arbitrarily at each step 
one interval in which to insert a new vector.  We call the set of 
such choices a chamber.   It is then necessary to define the 
limits of each chamber so that the full set of chambers tiles 
phase space.

ξi



Here is a useful definition of a chamber:

Let the nth vector be inserted between 1 and 2.  Then allow 
all values of                 such that

           is the smallest invariant mass of two neighbors,
       and

Reversing the inequality defines a 
second chamber in which n is radiated
on the left side of 1.

These prescriptions put reasonable
upper limits on the        integrals.

The ordering of virtualities        is 
similar to the ordering in a parton shower.   In fact, we can 
identify       with the evolution variable of a parton shower.
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s1n
sn2

s31
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ξ1j

ξ1, ξ2, φ
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s1n
sn2

s31

We look at the emission in the chamber 

between 1 and 2, on the side of 1

as an emission from the gluon 1
in the antenna (in the sense of VINCIA)
of gluons 1 and 2.

At each stage in the shower, we choose an antenna and 
an emission side at random.

The correspondence to Altarelli-Parisi is 

and  
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We also choose definite values of the gluon helicities.

We can exactly solve for emissions with the measure

with the leading-log formula for 

The gluon splitting 
functions are:

We implement the numerators as a weight applied to each 
emission.
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More precisely, each emission then receives a weight         , equal 
to the numerator of the splitting function times zero if the chosen 
kinematics violates the chamber conditions.

In most Monte Carlo programs, we generate weight-1 events by 
hit-or-miss.  Arrange the weights so that, always,                 .  For 
each generated event, choose a random number       such that 
                   .  Accept the event if              .  

In a parton shower, this method must be modified.  It is obviously 
not correct to reject the whole event if               in one parton 
emission. 

w(x)

w(x) < 1

0 < R < 1
R

w < R

w > R



The PYTHIA manual gives a simple solution to this problem.

Let                              be the evolution variable.  Let          
be the emission probability for one parton in a shower that 
we can model explicitly (e.g. all numerators = 1, no chamber 
inequalities), and let           be the emission probability for 
the true shower.  In general,            depend on all of the 
kinematic variables of the emission.  The weight is 

The correct probability for emitting the next parton obeys

for which the solution is 

         is called the Sudakov factor.  To choose the next   , we 
would solve:                               -  but typically this is too 
hard to do.

t = log(m2
h/sij)

f(t)

g(t)

f, g

w = f/g < 1

dP

dt
= f(t) · P (t)

P (t) = e−S(t) S(t) =
∫ t

0
dt′f(t′)

S(t) t
log(1/R) = S(t)



Choose         so that we can solve exactly the corresponding 
equation for its Sudakov factor.    Then, proceed as follows:

Work forward in   .  Starting from          , choose the next 
emission point      using the probability          .  

Compute                   and accept the emission if               .

If this fails, use     as the starting point and go farther forward,
choosing the emission point      using the probability      .   
Accept this emission with probability                 .

Continue as needed, stopping when     reaches           (minimum 
virtuality).

Add up all possible sequences of emissions and acceptance or 
rejections.  The sum is equal to                                  !

t t = 0

w > R

g(t)

g(t)

w = f/g

t1

t1
t2 g(t)

w = f/g

t tmax

P (t) = exp[−S(t)]



For a simple parton shower, we choose for the numerators of the 
splitting functions:

times zero if the chosen point violates the chamber inequalities.

However, we could also use more complicated weights.  The  
prescription

reweights the emissions to the probabilities given by exact tree-
level matrix elements.  We can use this prescription as long as 
our computer has the strength to compute the matrix elements.
 
The two prescriptions agree for  h-> 3 g, so the simple shower is 
exact at this level.  It is quite accurate at higher levels.

1 ,
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,
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w =
|M(h→ ng)|2/|M(h→ (n− 1)g)|2

(2p1 · p2)/(2p1 · pn)(2pn · p2)



In principle, our code allows the maximum level at which 
exact matrix elements are used to be set to any value.  
The user can choose this value, depending on her patience.

The timing (for the plots I will show)  is : 

               0.7 msec/event   for the simple shower
 
               1.7 msec/event  using 6 gluon matrix elements

               7.6 msec/event  using 8 gluon matrix elements

Here are some results from the program: 



m(h) = 1000 GeV ;      evolve to 2 GeV

number of  generated partons

(simple shower)



Thrust distribution

h to 3g

light - simple shower
heavy - 6g matrix elements

VINCIA



To see better what changes with a more exact 
calculation, cluster the partons with ycut = 0.0001   
(cluster mass of 10 GeV), and plot the energies of 
the 5 highest-energy clusters.



simple shower (light) vs.  6 gluon (dark)



6 gluon (light) vs.  8 gluon (dark)



Conclusions:

This is a proof of principle for a new way to incorporate exact 
matrix elements into a parton shower.  Only the simplest 
situation has been implemented so far.

In principle, the method generalizes to processes with massive 
particles in the final state.  I apologize that the shower in 

is not ready for presentation at this conference.

The generalization to initial-state radiation showers is even 
more virtual.

Still, there is promise that this might be an interesting tool for 
modeling multijet QCD processes.

e+e− → tt + ng


