PFA Performance for SiD

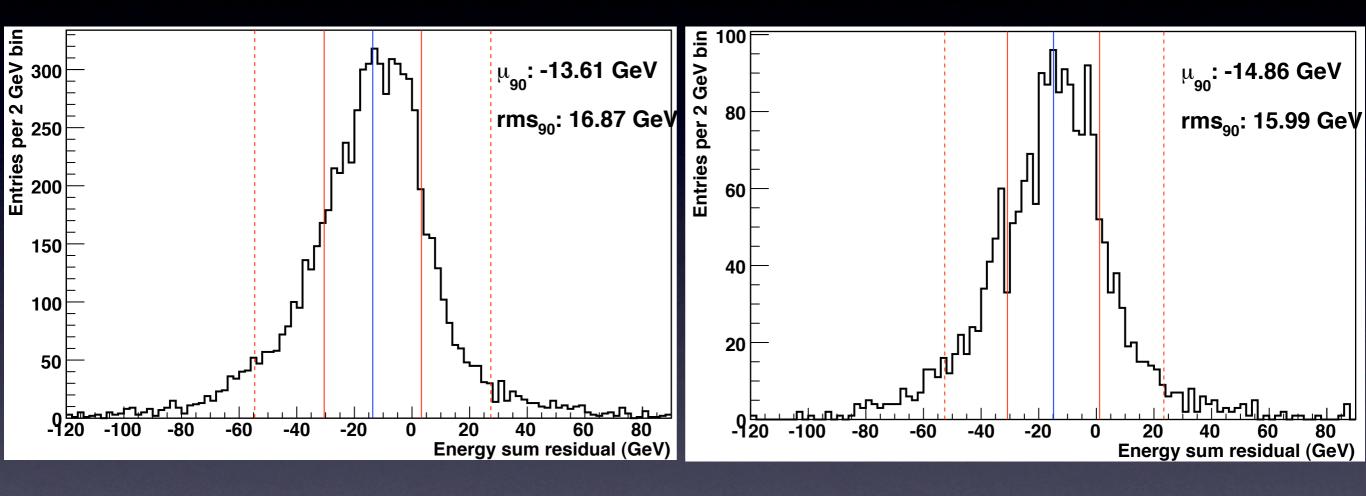
Mat Charles, Tae Jeong Kim, Usha Mallik U. Iowa

Overview

- Quick guide to PFA "benchmark" modes and conventions
- Current performance with sid02
 - All results obtained with LOI production version of PFA.
- Comparisons with Pandora
- Conclusions

Next talk: The algorithm itself & plans for improvement.

PFA metrics

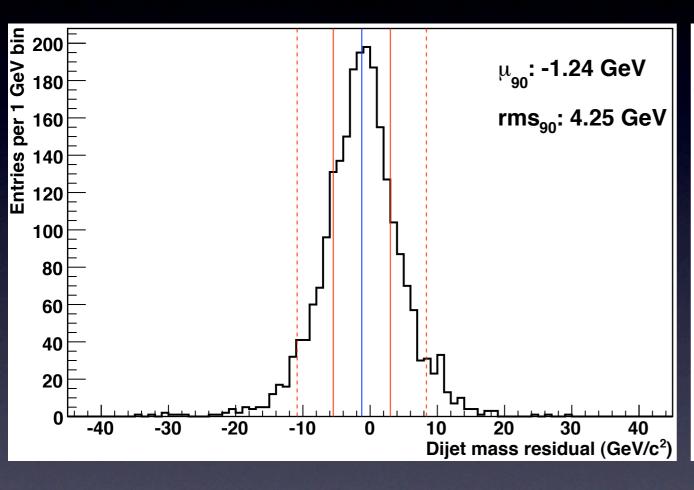

- There isn't just one single number for performance.
 - Which physics process and beam energy?
 - Which detector? (sid01, sid01_scint, sid02, ...)
 - Using which subsystems? (Muon endcaps? Muon barrel? Beamcal? ...)
 - Which angular range?
 - How is tracking done?
 - Quoting resolution how? (full RMS vs rms₉₀ vs single Gaussian σ ...)
 - Noise, thresholds, other detector effects
 - ... etc

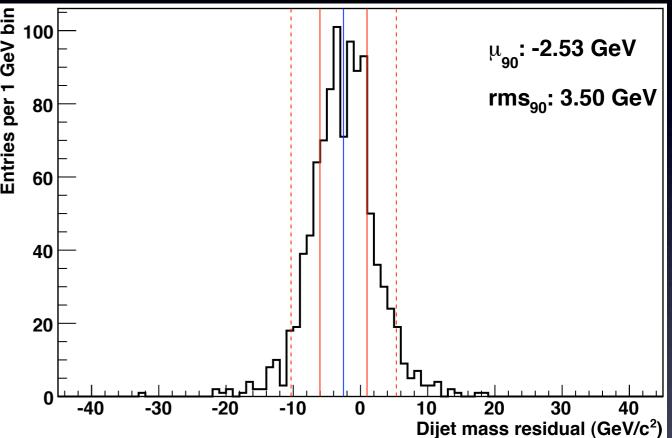
PFA metrics

- What is "acceptable physics performance"?
- The real answer will come from benchmark analyses.
 - ... including jet-finding, jet flavour ID, PID, efficiency, etc etc etc
- We use some PFA-centric tests as a prerequisite:
 - Look for dijet mass resolution of 3-4% (comparable to Γ for W, Z)
 - Want $\Delta M_Z/M_Z \sim 3-4\%$ for dijet mass residuals in $e^+e^- \rightarrow Z(vv) \ Z(qq) \ @ 500 \ GeV \ (q=u,d,s)$
 - Want $\Delta E_{CM}/E_{CM} \sim 3-4\%$ for $e^+e^- \rightarrow qq$ (q=u,d,s)
- This is not the physics -- this is what you need before it makes sense to try and do the physics.
- We always quote results as rms₉₀ (or α₉₀ etc)
 - It's weird but this is the convention now.
 - Remember that rms₉₀ is only ~80% of full RMS for a Gaussian.

Example performance plots

 $e^+e^- \rightarrow qq (q=u,d,s) @ 500 GeV for sid02 including muon endcaps (real tracking; no use of truth information at all)$

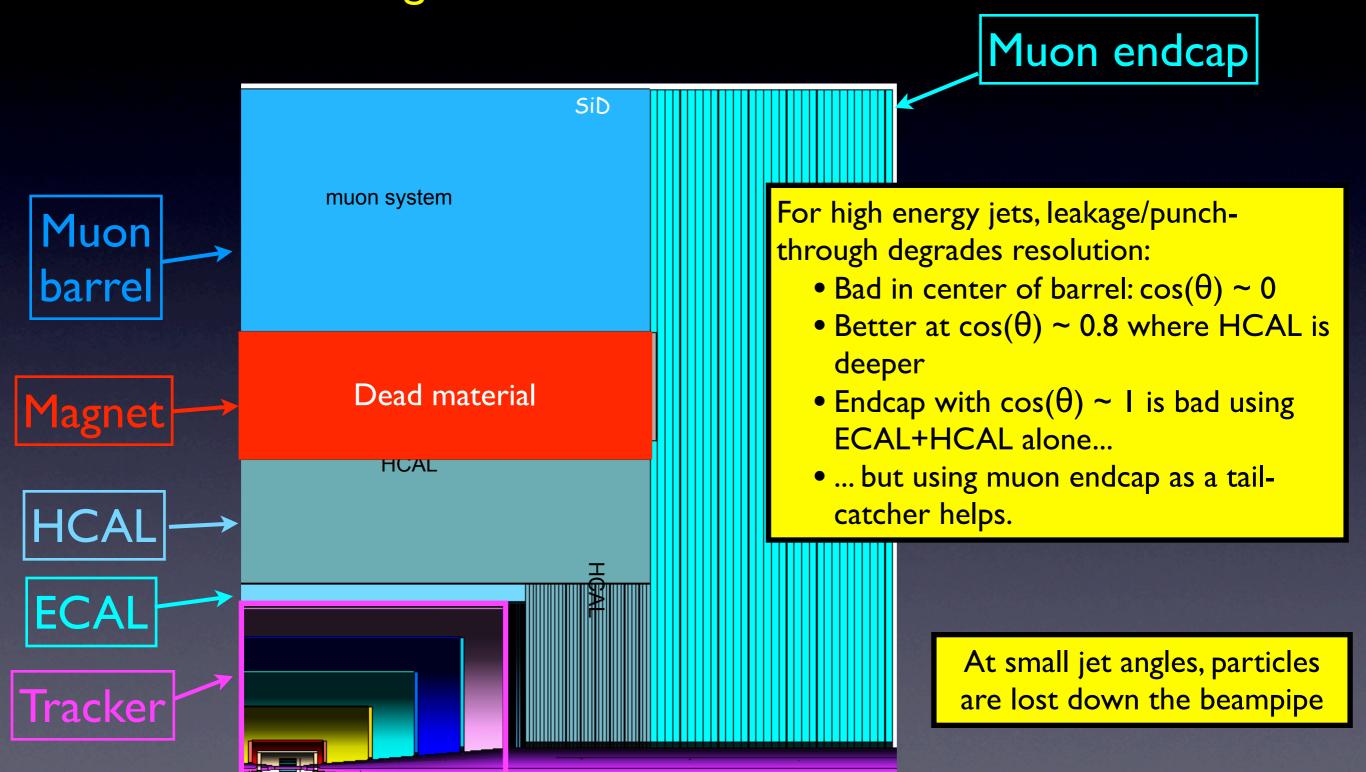

 $|\cos\theta|$ <0.8: $\Delta E_{CM}/E_{CM} = 3.5\%$


 $0.8 < |\cos\theta| < 0.95$: $\Delta E_{CM} / E_{CM} = 3.3\%$

• Significant difference between barrel and forward regions.

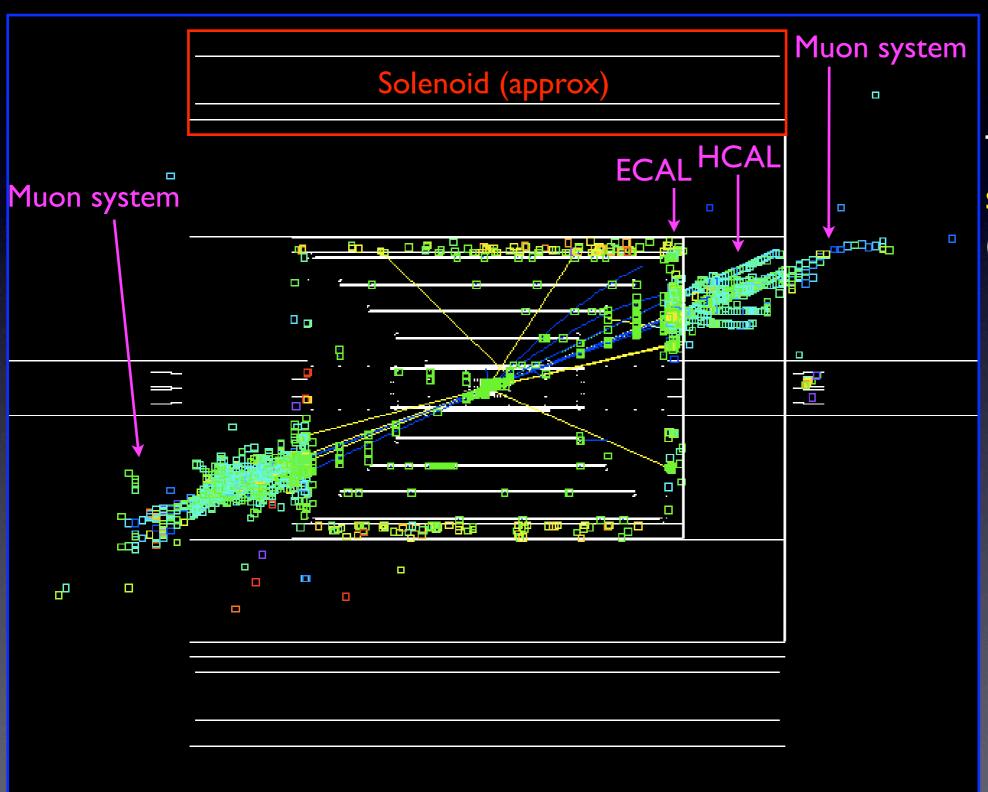
Example performance plots

 $e^+e^- \rightarrow Z(\nu\nu) \ Z(qq) \ @ 500 \ GeV \ for \ sid02 \ including muon endcaps (real tracking; no use of truth information at all)$


 $|\cos\theta| < 0.8$: dM/M = 4.7%

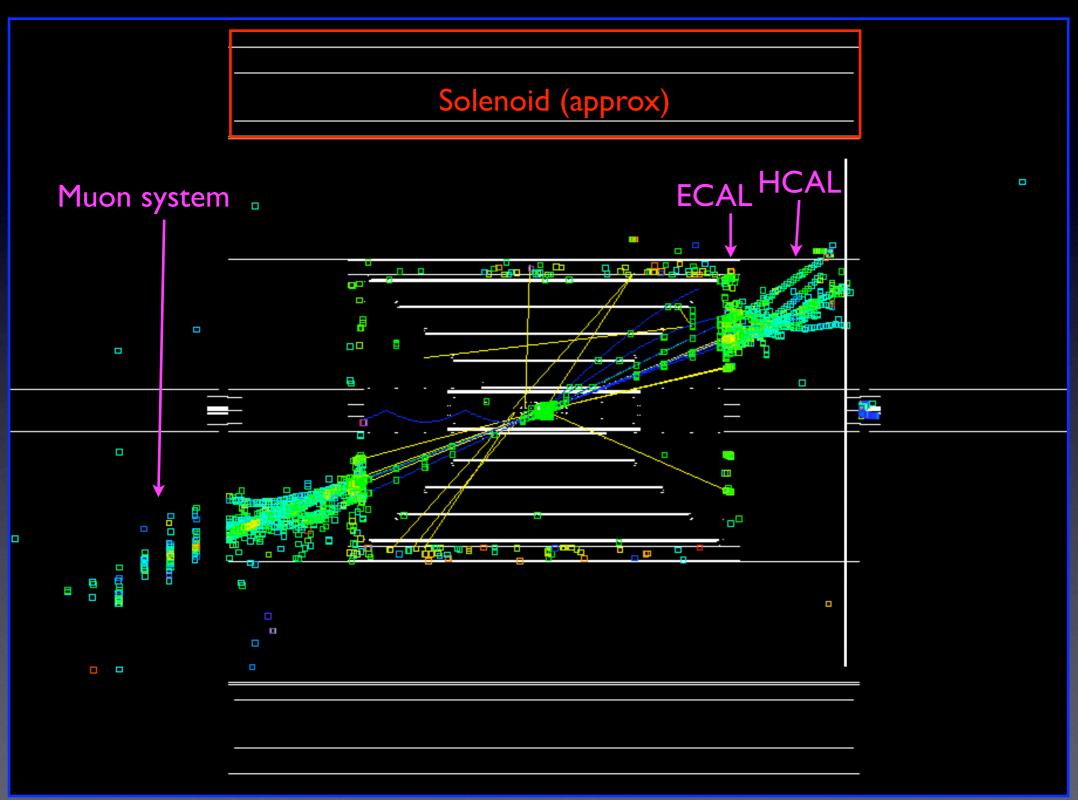
 $0.8 < |\cos\theta| < 0.95 : dM/M = 3.9\%$

- Very large difference between barrel and forward regions (partly due to event kinematics this time).
- Let's investigate further...


sid02: Angular dependence

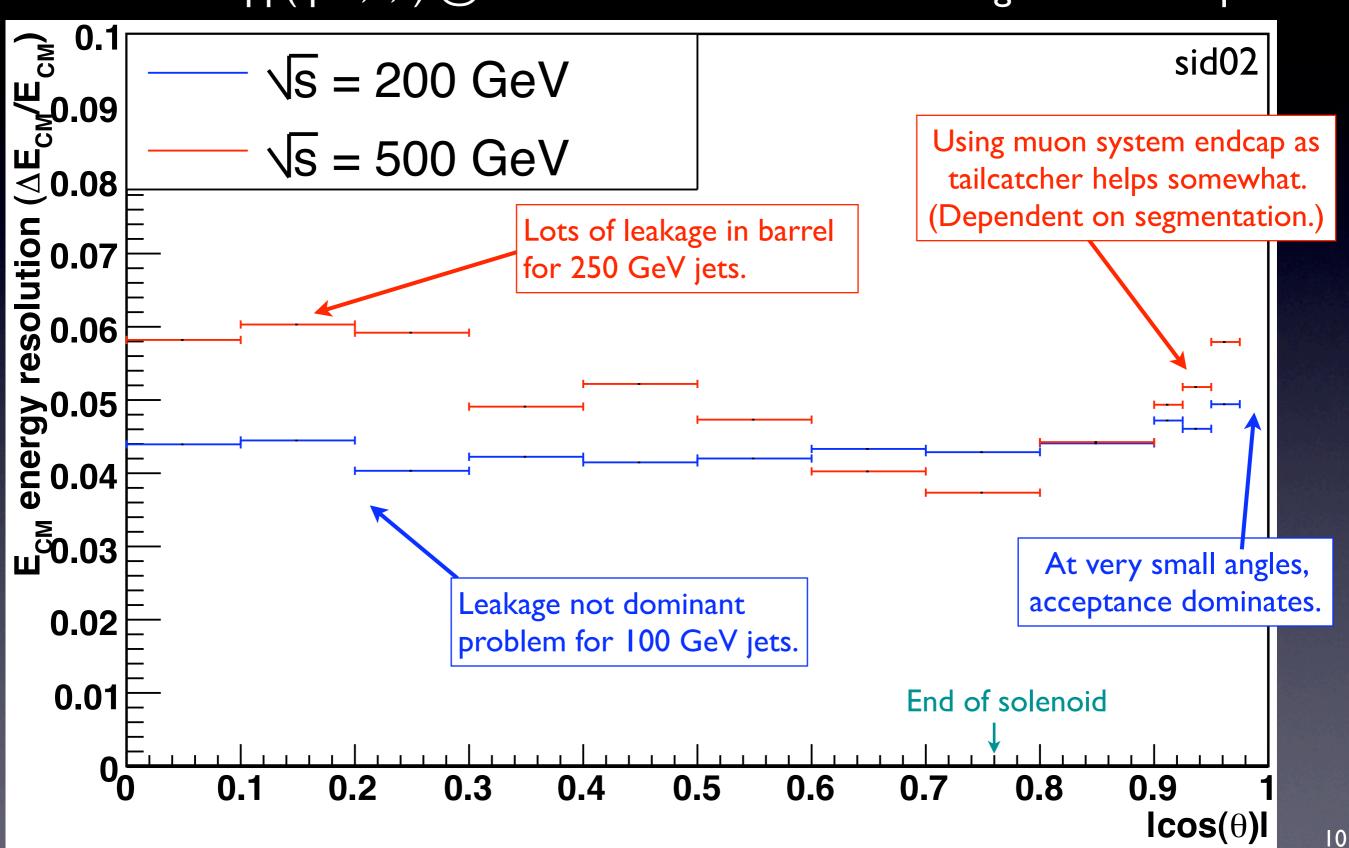
Aside from tracking, two main issues for PFA:

Angular dependence


ρ-z projection of sid01, showing a qq500 event:

This is with the sid01 muon system (5cm steel plates).

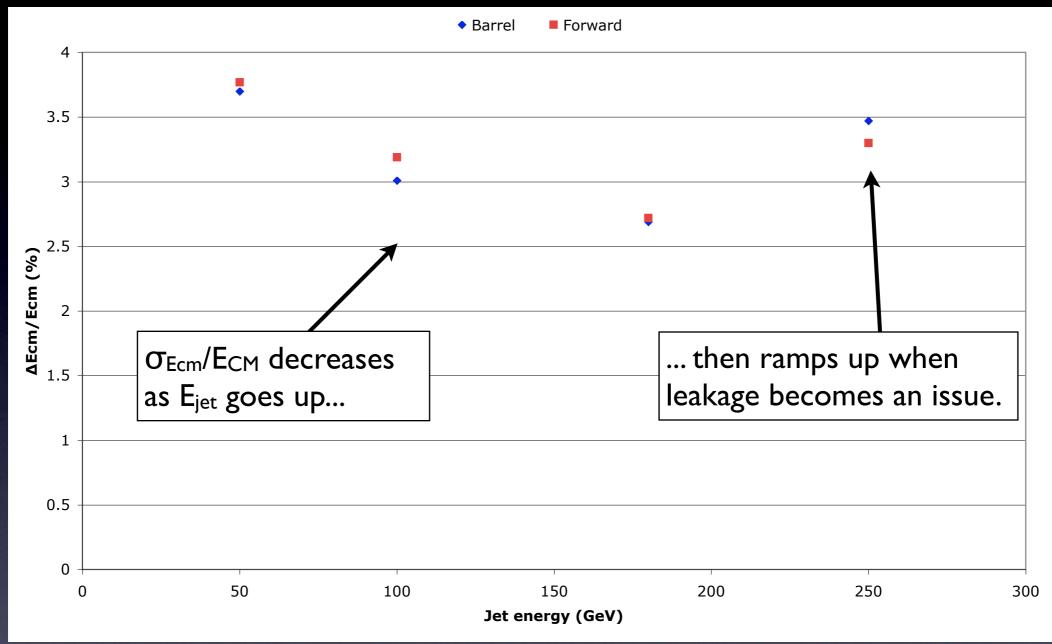
Angular dependence


ρ-z projection of sid02, showing a qq500 event:

This is with the sid02 muon system (20cm steel plates).

Angular dependence

 $e^+e^- \rightarrow qq (q=u,d,s) @ 200/500 GeV for sid02 including muon endcaps$


Energy dependence

Remember that for PFA, energy resolution looks roughly like:

```
\sigma = \sigma_{EM} \oplus \sigma_{Neutral hadrons} \oplus \sigma_{Confusion}
```

- For σ_{EM} and $\sigma_{Neutral\ hadrons}$, the energy dependence is understood. But we are dominated by $\sigma_{Confusion}$ -- this is less clear.
- For pure calorimetry, $\sigma \propto \sqrt{E}$.
 - Our PFA uses calorimeter energy measurements (for E/p), but is not controlled by them.
 - So expect PFA to scale somewhere between σ α \sqrt{E} and σ α E (such that σ/E will improve slowly with energy).
- Eventually σ_{Leakage} appears and dominates everything.

Energy dependence

- So event energy sum resolution is between 2.5% and 4.0% across the board.
- ... hence so is estimated mass resolution for mono-energetic, back-to-back jets.
- Compare to real mass resolution in ZZ events of typically 4.4%.

Real vs Cheat Tracking

- Recently switched from cheat to real tracking.
- Real tracking performing well:

[See talk by Rich Partridge]

- Cheat tracking somewhat better in e⁺e⁻ → qq events at lower jet energies, minimal difference at higher jet energies.
- Cheat tracking significantly better for \overline{Z} dijet mass resolution in $e^+e^- \to Z(qq) \ Z(VV)$ events.
- Calorimeter-assisted tracking for V/kinks/secondaries in progress but not yet integrated into PFA. [See talk by Dmitry Onoprienko]

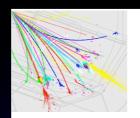
	Real tracking		Cheat tracking		
	barrel	forward	barrel	forward	
qq100	3.7%	3.8%	3.4%	3.5%	
qq200	3.0%	3.2%	2.8%	3.0%	
qq360	2.7%	2.7%	2.6%	2.6%	
qq500	3.5%	3.3%	3.5%	3.4%	
ZZ	4.7%	3.9%	4.2%	3.7%	

 $\Delta \mathsf{E}_\mathsf{CM}/\mathsf{E}_\mathsf{CM}$

 $\Delta M/M$

- This is a hard thing to do properly! So far no true apples-toapples comparison has been done:
 - Difficulties in getting the fine details of LDC00Sc etc right -- we haven't been able to simulate them in org.lcsim properly.
 - Mokka geometry description complex -- haven't succeeded to build SiD from scratch. Marcel Stanitzki has made several SiDish detectors by deforming LDC00Sc, but none is a true sid02.
- And there are other issues too, e.g.
 - Tracking (TPC vs silicon, handling of secondaries, etc)
 - HCAL segmentation
 - Pandora is tuned for LDC00Sc, not SiD.
- Bottom line: impossible to completely decouple comparing detectors from comparing algorithms.
- That said...

Let's start with a very unfair comparison: sid02 for $0.0 < |\cos(\theta)| < 0.8 \text{ vs}$ LD for $0.0 < |\cos(\theta)| < 0.7$


B=3.5T, Z=2x2.4m, R=1.85m, 30 layer ECAL with 5x5mm Si pixels, 48 layer HCAL with 3x3cm scintillator cells.

sid01	org.lcsim sid02	Pandora v03-β ILD CLIC08, 15 Oct 2008
qq90		$\Delta E_{CM}/E_{CM} = 2.5\%$
qq100	$\Delta E_{CM}/E_{CM} = 3.7\%$	
qq200	$\Delta E_{CM}/E_{CM} = 3.0\%$	$\Delta E_{CM}/E_{CM} = 2.1\%$
qq360	$\Delta E_{CM}/E_{CM} = 2.7\%$	$\Delta E_{CM}/E_{CM} = 2.0\%$
qq500	$\Delta E_{CM}/E_{CM} = 3.5\%$	$\Delta E_{CM}/E_{CM} = 2.0\%$

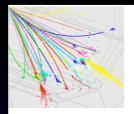
So our PFA on sid02 is outclassed by Pandora on ILD.

What about a fairer comparison: sid02 vs a SiDish detector?

Caution: This is an older version of Pandora.

The variants

TAG	Layers	total thickness	Iron thickness	Scintillator thickness	HCAL thickness	λ_{tot}
SIDish_v2_hcal30	30	32.7	26.2	6.5	980	4.92
SIDish_v2_hcal40	40	24.5	18.0	6.5	980	4.61
SIDish_v2_hcal50	50	19.6	13.1	6.5	980	4.45
SIDish_v2_hcal30_l45	30	31.7	25.2	6.5	951	4.75
SIDish_v2_hcal40_l45	40	25.4	18.9	6.5	1016	4.83
SIDish_v2_hcal50_l45	50	21.6	15.1	6.5	1081	4.91
SIDish_v2_hcal60_l45	60	21.6	15.1	6.5	1081	4.91
SIDish_v2_hcal30_l50	30	34.5	28.0	6.5	1035	5.25
SIDish_v2_hcal40_l50	40	27.5	21.0	6.5	1100	5.33
SIDish_v2_hcal50_l50	50	23.3	16.8	6.5	1165	5.41
SIDish_v2_hcal60_l50	60	20.5	14.0	6.5	1230	5.49
SIDish_v2_hcal30_l55	30	37.3	30.8	6.5	1119	5.75
SIDish_v2_hcal40_l55	40	29.6	23.1	6.5	1184	5.83
SIDish_v2_hcal50_l55	50	25.0	18.5	6.5	1249	5.91
SIDish_v2_hcal60_l55	60	21.9	15.4	6.5	1314	5.99
SIDish_v2_hcal30_l40	30	28.9	22.4	6.5	867	4.25
SIDish_v2_hcal40_l40	40	23.3	16.8	6.5	932	4.33
SIDish_v2_hcal50_l40	50	19.9	13.4	6.5	997	4.41
SIDish_v2_hcal60_l40	60	17.7	11.2	6.5	1062	4.49
SIDish_v2_hcal30_l35	30	26.1	19.6	6.5	783	3.75
SIDish_v2_hcal40_l35	40	21.2	14.7	6.5	848	3.83
SIDish_v2_hcal50_l35	50	18.3	11.8	6.5	913	3.91
SIDish_v2_hcal60_l35	60	16.3	9.8	6.5	978	3.99



Marcel Stanitzki

What about a fairer comparison: sid02 vs a SiDish detector?

Caution: This is an older version of Pandora.

These lines straddle the right number of layers (40) and iron thickness (20mm)

The variants

NB: Scintillator HCAL

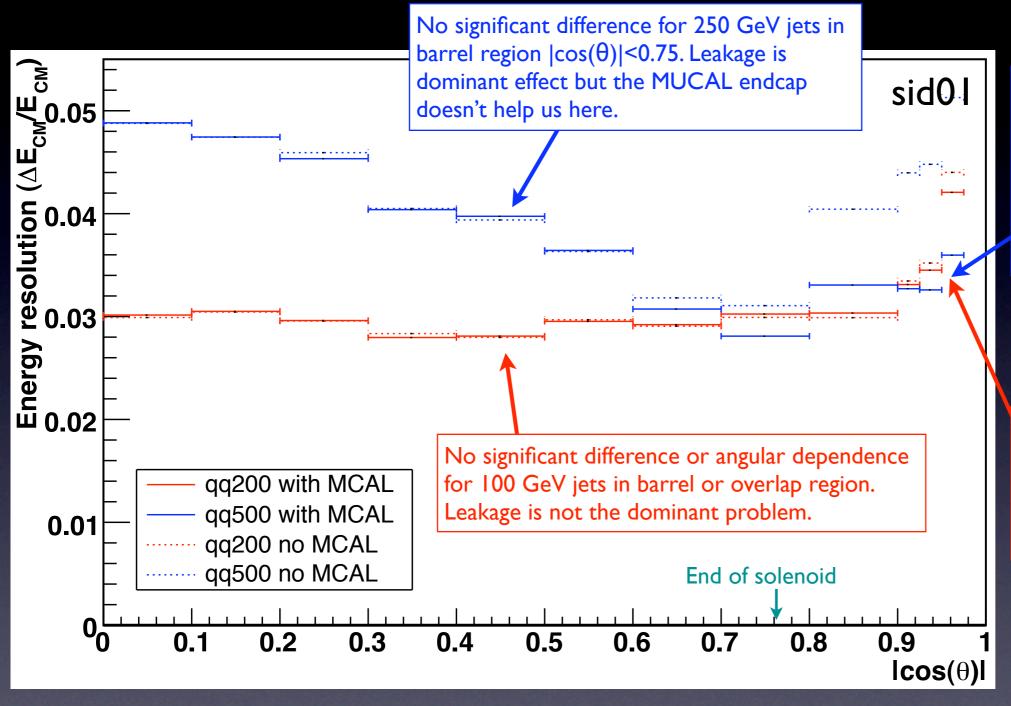
TAG	Layers	total thickness	Iron thickness	Scintillator thickness	HCAL thickness	λ_{tot}
SIDish_v2_hcal30	30	32.7	26.2	6.5	980	4.92
SIDish_v2_hcal40	40	24.5	18.0	6.5	980	4.61
SIDish_v2_hcal50	50	19.6	13.1	6.5		4.45
SIDish_v2_hcal30_l45	30	31.7	25.2	6.5		4.75
SIDish_v2_hcal40_l45	40	25.4	18.9	6.5		4.83
SIDish_v2_hcal50_l45	50	21.6	15.1	6.5		4.91
SIDish_v2_hcal60_l45	60	21.6	15.1	6.5		4.91
SIDish_v2_hcal30_l50	30	34.5	28.0	6.5		5.25
SIDish_v2_hcal40_l50	40	27.5	21.0	6.5		5.33
SIDish_v2_hcal50_l50	50	23.3	16.8	6.5		5.41
SIDish_v2_hcal60_l50	60	20.5	14.0	6.5		5.49
SIDish_v2_hcal30_l55	30	37.3	30.8	6.5		5.75
SIDish_v2_hcal40_l55	40	29.6	23.1	6.5		5.83
SIDish_v2_hcal50_l55	50	25.0	18.5	6.5		5.91
SIDish_v2_hcal60_l55	60	21.9	15.4	6.5		5.99
SIDish_v2_hcal30_l40	30	28.9	22.4	6.5		4.25
SIDish_v2_hcal40_l40	40	23.3	16.8	6.5		4.33
SIDish_v2_hcal50_l40	50	19.9	13.4	6.5		4.41
SIDish_v2_hcal60_l40	60	17.7	11.2	6.5		4.49
SIDish_v2_hcal30_l35	30	26.1	19.6	6.5		3.75
SIDish_v2_hcal40_l35	40	21.2	14.7	6.5		3.83
SIDish_v2_hcal50_l35	50	18.3	11.8	6.5	913	3.91
SIDish_v2_hcal60_l35	60	16.3	9.8	6.5	978	3.99

Marcel Stanitzk

Many variants to choose from! Let's look at the closest to sid02.

	org.lcsim sid02 Real tracking	org.lcsim sid02 Cheat tracking	Pandora SiDish pair A (mean)
qq90			$\Delta E_{CM}/E_{CM} = 3.1\%$
qq100	$\Delta E_{CM}/E_{CM} = 3.7\%$	$\Delta E_{CM}/E_{CM} = 3.4\%$	
qq200	$\Delta E_{CM}/E_{CM} = 3.0\%$	$\Delta E_{CM}/E_{CM} = 2.8\%$	$\Delta E_{CM}/E_{CM} = 2.8\%$

So numbers are not so far apart for similar detectors.


(... but what about qq360/qq500? No SiDish data yet -- CPU time limitations.)

Summary

- SiD PFA now uses real tracking code.
 - Very impressive work by SiD tracking group.
- PFA performance is getting there.
 - Event energy resolution O(3.0-3.5%) for qqbar events up to $E_{jet}=250$ GeV
 - Some degradation from leakage at E_{jet}=250 GeV, esp. in barrel.
 - Dijet mass resolution ~ 4.4% for ΣE_{jet} ~250 GeV.
- Getting competitive with Pandora on SiDish detector for E_{jet} ≤ 200 GeV
 - ... but performance comparison at higher energies not yet clear.
 - ... and Pandora is a fast-moving target!
- We still have a lot of improving to do.
 - Already some post-LOI fixes queued up.

Backups

Angular dependence for sid0 l

Big improvement for 250 GeV jets in overlap/endcap region. MUCAL solves the leakage problem and makes endcap resolution much better than barrel. Acceptance dominates at very small angles

Small improvement for 100 GeV jets in forward region -- may not be statistically significant.
Acceptance dominates at small angles.

Important caveat: These results are for sid01 which has an unrealistic muon system (3x3cm transverse & 5cm longitudinal segmentation). It's not clear how performance will look for sid02.

PFA metrics

- Processes we use for quick benchmarking of PFAs:
 - $e^+e^- \rightarrow qq$ @ 100/200/360/500 GeV, looking at energy sum
 - $e^+e^- \rightarrow Z(\nu\nu) Z(qq) @ 500 GeV$, looking at dijet invariant mass
- These are chosen to be simple to analyze
 - Force q=u,d,s -- so no primary neutrinos
 - Only two jets -- so no penalty for jetfinding mistakes
 - $e^+e^- \rightarrow qq$ events offer direct comparison with Pandora results
 - ZZ events give nice, mixed range of jet energies (harder but more realistic -- exposes non-linearities in response etc) & are closer to real analysis needs (e.g. have to measure direction for opening angle)
- We always quote results as rms₉₀ (or α₉₀ etc)
 - It's weird but this is the convention now.
 - Remember that rms₉₀ is only ~80% of full RMS for a Gaussian.