LLRF (WP02) Update

S. Simrock for the LLRF Team

with contributions of VU-graphs from: G. Ayvazyan, V. Ayvazyan, K. Czuba, Z. Geng, M. Grecki, M. Hoffmann, T. Jezynski, W. Koprek, F. Ludwig, P. Morozov, P. Pucyk, C. Schmidt, J. Szewinski

Outline

- Status of Collaboration
- LLRF at FLASH
 - New Master Oscillator
 - Operational Experience
 - Machine Studies
 - Beam Feedback
 - 3.9 GHz system
- ATCA development
 - ATCA Hardware
 - ATCA Demonstration

Outline (C'nt)

- LLRF developments for the XFEL
 - Transient Detection
 - Piezotuner
 - MIMO Controller
 - Downconverter
 - Direct Sampling
 - Cavity simulator
 - Development system
- Documentation Projects

Status of the LLRF Collaboration

Status of Collaboration

- August 2008: Decision that LLRF will be German in-kind contribution
- Sept. 08 : Annex for remainder of 2008 signed with DMCS (Lodz), ISE (Warsaw), IPJ (Swierk)
- Sept. 08 : Collaboration meeting on Documentation of the LLRF (WP02)
- Oct. 08 : IFJ (Krakow) joined (installation work)

Attachment 1

Task / Item	Subtask / Item	Responsible person	Institute	Schedule	Cost [k€]
WP 1.2 Collaboration deliverable	Paper work: agreements, deliverables verification and acceptance, reports,	Dariusz Makowski	DMCS	08-12.2008	0
WP 2.2 Detectors and Actuators	erc Preparation of requirement for digital vector modulator in Enterprise Architect	Szymon Tarnowski (100%)	DMCS	1.09.2008	0
deliverable WP 2.2 Detectors and Actuators deliverable 1 deliverable 2 deliverable 3	Requerements preparation Mathematical analysis and simulations of numerical modulation Parameters for filters (bandwith vs cost vs stability) Sampling frequency, samples count, sample width Optimal FPGA implementation of hardware	Szymon Tarnowski Szymon Tarnowski (100%) Szymon Tarnowski Szymon Tarnowski Szymon Tarnowski	DMCS DMCS DMCS DMCS DMCS	1.09.2008 1.09./2008 1.10.2008 1.10.2008 1.10.2008	0
WP 2.2 Detectors and Actuators deliverable 1 deliverable 2	Tests and measurements of the digital upconverter at DESY Development of testboard Tests at DESY site	Szymon Tarnowski (100%) Szymon Tarnowski Szymon Tarnowski	DMCS DMCS DMCS	1.12.2008 1.11.2008 1.12.2008	2
WP 2.3 Digital feedback deliverable	Preparation of requirement for Digital Feedback in Enterprise Architect The requirements for ATCA carrier boards and AMC modules will be delivered in Enterprise Architect. Requirements and documentation for submodules of the ATCA-based feedback system.	Dariusz Makowski (50%), Adam Zawada (50%)	DMCS	1/10/2008	0
WP 2.3 Digital feedback deliverable	Development of PCIe drivers for ATCA carrier Source codes for low level drivers for the first version of carrier board	Dariusz Makowski (50%), Grzegorz Jabłoński (50%)	DMCS	1/09/2008	0
WP 2.3 Digital feedback deliverable	Development of LLL driver for ATCA carrier VHDL codes for low latency link drivers for the first version of carrier board	Wojciech Jałmużna	DMCS	1/09/2008	0
WP 2.3 Digital feedback	Development of diagnostic application for ATCA carrier board Application with GUI for PC computer and procedures written in C/C++ for the IPMC microcontroller will be delivered. ATCA carried with IPMC controller will be used as a demonstrator	Dariusz Makowski (100%)	DMCS	1/11/2008	0
WP 2.3 Digital feedback deliverable	Design of PCIe Root Complex mezzanine board with Power Quick III processor (hardware) Mezzanine module with PowerQuick III processor with high-speed connectors.	Dariusz Makowski (50%) , Piotr Krasiński (50%)	DMCS	1/12/2008	8
WP 2.3 Digital feedback	Development of IPMI ATCA board with Renesas microcontroller	Dariusz Makowski (100%)	DMCS	1/10/2008	3
deliverable WP 2.3 Digital feedback deliverable	ATCA carrier board with Renesas Microcontroler. Development of IPMI software for Atmega microcontroller Software and low level drivers for ATMEGA 1281 microcontroller for ATCA- IPMI carrier board.	Adam Zawada (100%)	DMCS	1/10/2008	3
WP 2.3 Digital feedback deliverable	Development of IPMI software for Renesas microcontroller Software and low level drivers for Renesas M16C65 microcontroller for	Dariusz Makowski (50%), Adam Zawada (50%)	DMCS	1/11/2008	1
WP 2.3 Digital feedback deliverable	APPLICATION CATTOR DOTAL. Application for management and monitoring of ATCA devices using IPMI standard (software) Application with GUI for PC computer and set of procedures written in C/C++ will be delivered. ATCA carried in version one with IPMC controller	Dariusz Makowski (50%), Adam Zawada (50%)	DMCS	1/10/2008	1
WP 2.3 Digital feedback deliverable	will be used as a demonstrator. Application for configuration data storage in configuration data base (software) The set of procedures for storing and reading firmware from database will be delivered.	Dariusz Makowski (50%), Bartosz Sakowicz (50%)	DMCS	1/11/2008	0
WP 2.3 Digital feedback	Development of second version of ATCA carrier board	Dariusz Makowski (50%), Wojciech Jalmuzna (50%)	DMCS	1/11/2008	13
deliverable	Schematic diagrams will be created and the ATCA carrier board will be delivered. Development of operating system and low level drivers for Power Quick III	Adam Piotrowski (50%),	DMOO	4/00/0000	
WP 2.3 Digital feedback	processor Source code for low level drivers for diagnosis of PCI Express subsystem,	Dariusz Makowski (25%) Grzegorz Jabłoński (25%)	DMCS	1/09/2008	0
deliverable	several patches for Linux operating systems to enable the MSI interrupt support, port for Freescale Board Support Package to RadiSys board.			- / /	
WP 2.3 Digital feedback deliverable WP 2.4 Piezo compensation	A I CA and AMC PCB templates for Mentor Graphics A library with ATCA and AMC template for Mentor Graphics will delivered Preparation of requirements for Piezo Control in Enterprise Architect	Konrad Przygoda	DMCS	2/08/2008	0
deliverable	The requirements for Piezo Control will be delivered in Enterprise Architect. Requirements and documentation for various submodules (Piezo Drivers, 32-channel control system with Gigalink, ATCA-based Piezo Controller)				
WP 2.4 Piezo compensation deliverable	Piezo controller development with SimCon-DSP board The multichannel scope for online detuning measurements (microphonics identification), the multichannel Lorentz force detuning compensation system as well as automatic control algorithms will be developed	Konrad Przygoda	DMCS	30.09.2008	0
WP 2.4 Piezo compensation	Piezo controller development with PowerQUICC III processor and Virtex 5 FPGA and external 32-ch DAC card	Konrad Przygoda (50%), Dariusz Makowski (25%), Grzegorz, Jabloński (25%)	DMCS	30.08.2008	3
deliverable	A prototype system based on Frescale and Xilinx starter kits, firmware for Xilinx, PowerQuick processor will be delivered.	Gizegoiz Jabioliski (23%)			
WP 2.4 Piezo compensation	Design and laboratory tests of Piezo Drivers prototypes 2 prototypes ver.1 and ver.2 was designed and tested.	Konrad Przygoda (25 %), Tomasz Poźniak (75 %)	DMCS	30.11.2008	6
WP 2.4 Piezo compensation	Design and development of 8-channels Piezo Drivers for permanent installation in the FLASH accelerator The 3 boxes with 8-channels Piezo Drivers was designed and tested. These Piezo Drivers are ready to the permanent installation in the FLASH accelerator	Konrad Przygoda (25 %), Tomasz Poźniak (75 %)	DMCS	30.11.2008	6
WP 2.4 Piezo compensation	Design and development of 8-channels piezo driver	Konrad Przygoda (50%), Tomasz Poźniak (50%)	DMCS	30.11.2008	6
deliverable WP 2.4 Piezo compensation	8-channels piezo driver units integrated with ATCA based architecture and 32-channels control system with GigaLink Design and development of 32-channels control system with GigaLink	Konrad Przygoda (50%), Dariusz Makowski (50%)	DMCS	30.10.2008	4

Development of IPMI software for Atmega microcontroller

Employees: Adam Zawada (100 %)

Task description: The software for the first version of IPMI development Carrier board (currently available) will be developed. The software communicates with ShelfManager and allows for ATCA carrier board activation. The software supervises AMC modules and forward messages to the main dual ShelfManager.

Deliverables: Software and low level drivers for ATMEGA 1281 microcontroller for ATCA-IPMI carrier board. Total credit: 2,86 ke Required time: 4 mwks

Development of IPMI software for Renesas microcontroller

Employees: Dariusz Makowski (50 %), Adam Zawada (50 %)

Task description: The software for the second version of IPMI development Carrier board with Renesas microcontroller will be developed. The software communicates with ShelfManager and allows for ATCA carrier board activation. The software supervises AMC modules and forward messages to the main dual ShelfManager.

Deliverables: Software and low level drivers for Renesas M16C65 microcontroller for ATCA-IPMI carrier board. Total credit: 4,29 ke+1 ke Required time: 6 mwks

Application for management and monitoring of ATCA devices using IPMI standard (software)

Employees: Dariusz Makowski (50 %), Adam Zawada (50 %)

Task description: The aim of this task is to develop an application for communication with ShelManager to monitor and control all subsystems of the board directly from the PC computer connected to the ShelManager via Ethernet cable. All functionality defined by ATCA standard will be supported. The application allows to develop custom functions, e.g. FPGA firmware download via IPMI link. The application can be easily updated in the future to introduce new functions. *Deliverables*: Application with GUI for PC computer and set of procedures written in C/C++ will be delivered. ATCA carried in version one with IPMC controller will be used as a demonstrator.

Total credit: 2,86 ke+0,5 ke Required time: 4 mwks

Application for configuration data storage in configuration data base (software)

Employees: Dariusz Makowski (50 %), Bartosz Sakowicz (50 %)

Task description: The aim of this task is to develop the application that allows to store and recover FPGA configuration in external database. The method of FPGA programming requires to be discussed, Ethernet, IPMI or other medium will be used.

Deliverables: The set of procedures for storing and reading firmware from database will be delivered. Total credit: 4.29 ke Required time: 4 mwks

Development of second version of ATCA carrier board

Employees: Dariusz Makowski (50 %), Wojciech Jałmużna (50 %)

Task description: The aim of this task is design and fabricate second version of the ATCA carried board with Virtex V5 FPGA, DSP, IPMC and PowerQuick III socket. The carried board will allow to carry out first physical experiment with controller. No software/firmware for will be delivered.

Deliverables: Schematic diagrams will be created and the ATCA carrier board will be delivered.

Total credit: 5,71 ke+10 ke Required time: 8 mwks

Development of operating system and low level drivers for Power Quick III processor *Employees:* Adam Piotrowski (50%), Dariusz Makowski (25%), Grzegorz Jabłoński (25%)

Task description: In the frame of this task, several improvement of Linux operating system will be proposed and implemented. The most important of them are: implementations of MSI interrupt support in Linux kernel, porting

LLRF at FLASH New Master Oscillator

Some History

• In 2001 a 20 page requirement document created by H.W. was sent to industry. Only one company offered building the MO. Others claimed they could not do it or offered very expensive research

Very first New MO 1 crate!

- Requests for new signals, frequencies and powers, more tap points forced changing concept and rebuilding ready boxes. This influenced the growth of the diagnostic system and the power supply.
- Many problems had to be solved: e.g. cabling, power supply filtering, ground loops, heat dissipation, sensitivity to mechanical vibrations, parts breaking down (manufacturer error), commercial components not fulfilling specs....

New Master Oscillator installed at FLASH

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

HELMHOLTZ

GEMEINSCHAFT

MO Distribution

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

MO Diagnostics

- Measured are:
- Power levels
- Phase changes over amplifiers
- VSWR of most important cables
- Crate temperatures
- PLL lock status
- VCO control voltages
- Power supply voltages and currents

FLASH LLRF Operation and Machine Studies

Progress on ACC1 Control

- New Simcon DSP system
- Beam based Adaptive FF
- BIC interlock interface
- Amplitudes and phases are available from controller for individual cavities (easy to calibrate)

Improvements on RF Operation

- More stable condition of ACC1 operation by changing power distribution and adjusting the phases (Energy gain from ACC1 ~130MeV)
- New diagnostics for DSP ADC readout for ACC2-ACC6 (DSP67 systems)
- More diagnostics for LLRF/HPRF chain measurement (Example: Investigation of ACC23 amplitude and phase jumps)
- Improved Adaptive Feedforford procedure for ACC2-ACC6
- Less phase drifts after installation of new MO

Machine Studies

- ACC1 control with Simcon DSP system
- LLRF control test at ACC23 with Simcon system
- LLRF Application Study
- Test of 24 channel FPGA based controller
- Lorenz force detuning compensation demonstration using ATCA prototype system
- Piezo control Automation
- New Master Oscillator Installed and commissioned
- Sufficient LLRF performance during long pulse 9mA experiment

9mA Experiment: RF Performance

- Successful RF operation with 900 MeV energy and 800us flat-top for all accelerating modules
- ~500 bunches at ~2.6nC (1MHz) with low losses
- Set-up all modules with 800us flat-top and 1GeV total energy
- RF control worked well, and ramping up the number of bunches was smooth and rapid

Operational experience during FLASH operation

General problems with LLRF

- Drifts and jumps caused by various reasons
- Broken cable connection
- Lack of diagnostics and automation

Some examples:

- Unstable Gun operation (frequently) reason unclear, may be wrong calibration of virtual probe signal or operation very close to limits – problem is investigated.
- Unstable ACC operation wrong VS calibration and/or operation close to limits
- Drifts in the machine the situation is much better after MO upgrade.
- Jumps in phase and amplitude e.g. in ACC1 there was a long fight (over 2 months) against subtle timing problem in DOOCS server, finally workaround was applied and problem disappeared. Another example is jumps caused by bad cable connection (happen from time to time).

Operational experience during FLASH operation

Further examples:

- Machine state messed after studies several times the particular parameters (e.g. klystron HV settings) and/or hardware configuration (e.g. terminators missing, cable disconnected) were not restored after studies caused problems during operation. Automation and diagnostics would help to deal with that.
- Operators mistakes (e.g. rebooting of hang up server without stopping RF, not stopping AFF algorithm after event).
- Wrong hardware configuration after reboot the hardware did not initialize correctly.
- Hardware failures.

FLASH LLRF Beam Feedback

18

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

Scheme of beam based feedback at FLASH

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

Beam based feedback

Tasks done by MSK:

- ACB 2.1 board designed manufactured and assembled
- Implemented firmware for ACB 2.1 board to receive signals from detectors (BAM and PYRO) and calculate amplitude and phase corrections
- ACC1 controller firmware improved to receive beam based feedback corrections from ACB
- The installation of ACC1 LLRF controller upgraded to SimconDSP
- New DOOCS server for ACC1 written and installed for operation (it supports new BBF features implemented in the controller)

Results:

• Bunch arrival time jitter decreased from 150-200fs to 25-50fs

FLASH LLRF 3.9 GHz System

21

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

Realization

LLRF control for the 3.9 GHz system is in principle identical to the 1.3 GHz concept:

- VME based with as many as possible standard hardware boards
- SIMCON DSP based
- -> Standard fallback LLRF solution with modified downconverters

We expect additional developments in:

- LO-Generation hardware (3.9 GHZ out of 1.3 GHz with low noise)
- Downconverters hardware (new IF-scheme, drift-calibration)
- FPGA firmware and DOOCS server modifications

Status (1)

- We are assempling one VME crate + SIMCON based hardware including a 3.9 GHz converter box with a LLRF system capable of regulation of 4 3.9 GHz Cavities and on RF station. We build this from parts we already have or which are available. Some parts are still missing -> delay. The noise performance of this system is going to be charackterized in the laboratory to end of August and alternative concepts for the receiver can then be worked out if necessary. From experiences at FLASH and the simulations we can estimate the impact on the beam parameters (jitter, energy fluctuations, bunch length).
- We are trying to aquire diploma or Phd students for following projects (4-5 months, supervised by M. Felber, F. Ludwig, M. Hoffmann):
 - RF-Bord design, PCB filter design
 - Upgrade of DWC VME board to 3.9 GHz operation
 - Driftfree detectors 1.3 GHz + 3.9 GHz

Status (2)

- 3. **simulation software** is beeing worked on to understand:
 - Impact of Field stability on beam parameters
 - The necessary requirements for LLRF control
 - Stability and max. gain of controller
- 4. FPGA firmware is beeing modified for noise charackterization tests.
- DOOCS server installation, comissioning, maintainance turned out to be problematic. There is no active support from MCS so far. We will have to find a solution here.

ATCA Hardware Development

25

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

Achievement : AMC – Timing Module

Prototype has been tested. Modules provides clock signals to the carrier board

Achievement : AMC – VM (Vectro Modulator)

Digital up-converter has been tested. Modules provides output signal from the control system to the klystron.

Achievement : New concept and design for the ATCA Carrier Board

Carrier Board

design ready for manufacturing
several technical (mechanical) problem have been solved

CB consists of 2 boards:

- processor board

- extention board

- implemented "flexible" communication schema

Basic elements of the LLRF system

<u>Carrier Board</u> (main board + extension)

AMC Modules

- ADC
- VM
- Timing
- Communication
- Piezo-controller

<u>RTM</u>

Downconverter

Centralized system for the LLRF

All boards are in the central 14 slot ATCA crate

Communication vi:

PCIExpress

GbEthernet

HELMHOLTZ

GEMEINSCHAFT

Distributed system for the LLRF

Electronics modules are distributed along Cryomodules and located in four ATCA crates

Communication vi:

- PCIExpress
- GbEthernet

Delays

- Some delay was caused by difficulties to access documentation (data sheets, application notes for fast chips), it was necessarily to sign NDAs (Non Disclosure Agreement), no reference designs available
- ATCA Carrier Board complicated design, 2/3 of team work remotely
- New halogen free materials caused problem with manufacturing of pcb boards (metallization of deep blind vias). For that reason two boards are delayed : o AMC-Carrier Module o Carrier Board

ATCA demonstration

ATCA Demonstration – Hardware & Software Architecture

HELMHOLTZ
ATCA Demonstration – AMC Modules

ATCA Demonstration – used hardware (2)

ATCA CPU Blade ADLink CPU-6890

Includes:

- DESY Linux

-DOOCS server for communication and management of front-end servers on carrier blades

-client applications - DOOCS panels, Matlab

ATCA Demonstration – hardware & software architecture

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

HELMHOLTZ

The European X-Ray Laser Project X-Ray Free-Electron Laser

ATCA Demonstration – Laboratory Teststand

XFEL meeting, Oct. 15, 2008

GEMEINSCHAFT

ATCA Demonstration – Teststand for ACC4/5/6

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

HELMHOLTZ

GEMEINSCHAFT

ATCA Demonstration – Software development

Done:

TAMC900 Firmware in VHDL

- readout of 8 ADCs on TAMC900 with external clock and trigger,
- PCIe end-point for communication with

• Radisys Carrier Blade ATCA -1200 Software

- Linux ported on PowerQUICC with cross-compiler for custom applications
- front-end server:
 - communication and management of AMC modules through PCIe
 - communication with client applications through Ethernet on the shelf backplane
 - ring buffers for ADC readout

ADLink CPU-6890 Software

- universal DOOCS server for readout of hardware registers
- MEX functions in Matlab for direct communication with hardware

ATCA Demonstration – Status

- Tests in laboratory
 - Hardware setup tested in laboratory with ATCA-1200, TAMC900, CPU-6890
 - Test of readout of ADC through ATCA-1200 to DOOCS server in CPU-6890
 - Initial tests of AMC-VM module only analog part
- Installation of hardware in Extension Hall for ACC4/5/6 in progress
- Difficulties
 - problems with PCIe express communication on RadiSys ATCA-1200 solved by the manufacturer
 - problems with porting Linux on ATCA-1200 no good support from RadiSys
 - problems with production of DESY AMC module for AMC-VM still not produced

XFEL LLRF Development Transient Detection

Transient Detection System (ver. 1)

Delay line 20 ns (cable)

- Manual adjustment of the transient detection system
 very sensitive
- Other modes of a cavity (8/9 π, ...)
 - not possible to filtering during 20 ns
- Reduce the price from ~40.000€ to acceptable

 $A_{\pi} - A_{8/9\pi} = 20 dBmV$

 $A_{\pi} - A_{8/9\pi} = 10 dBmV$

Transient Detection System (ver. 2)

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

Measured phase comparison

HCM – High Charge Measurement

New – Transient Detection System ver. 2

Measurement setup for ACC4 (future plan)

- Confirm the ACC1 results at ACC4
- RF leakage from Gun eliminated
- Bunch energy at ACC4 (450MeV) to compare with at ACC1 (5MeV)

XFEL LLRF Development Downconverters

47

Downconverter for LLRF

• Non-IQ-sampling scheme :

Achieved Performance at FLASH

• Multi-channel downconverter :

8 channel Gilber-mixer receiver VME based + SIMCON DSP (14-bit ADCs) VME based

• Stability results (single channel) :

Short-term, bunch-to-bunch (800us) : $\Delta A / A_{rms} = 0.015\%$, $\Delta \varphi_{rms} = 0.0092 \ deg$

Mid-term, pulse-to-pulse (10min) : $\Delta A / A_{rms} = 0.016\%$, $\Delta \varphi_{rms} = 0.0147 deg$

Long-term, drifts (1hour) : $\Delta A / A_{pkpk} = 0.09\%$, $\Delta \varphi_{pkpk} = 0.05 deg$ $\theta_A = 2e-3/°C$, $\theta_P = 0.2°/°C$ • Pulse-to-Pulse Beam Stability :

RTM Downconverter for the ATCA System

• <u>Very</u> compact Rear Transition Module (RTM) :

RF inputs (8 channels): 1300MHz, +0dBm input power

S Γο ΑΤCΑ 0000000 0000 valuation Adapte [cm] LO input: IF Outputs (8 channels): [1310MHz, 1350MHz] [10MHz,60MHz]

Gesellschaft für kryoelektrische Produkte mbH

ype : LT5527 (Gil	bert-Mixer)
1300MHz	,
[1310MHz, 135	0MHz],
	ype : LT5527 (Gil 1300MHz [1310MHz, 135

CHARACTERISTICS	RATING
IF Frequency, MHz	1 - 50
Conversion Loss, dB	-2 (typ)
Noise Figure (incl. the accessory card), dB	18 (typ)
IF Spurious Signals, dBc	<-60
IF Filter cut-off, MHz	60
IF Harmonic Distortion (IF < 15 MHz, RF	1
input power < 0 dBm), %	
IF Harmonic Distortion (IF > 30 MHz, RF	0.25
input power < 9 dBm), %	
Inter-Channel Crosstalk, dB	>65

HELMHOLTZ

Pulse-to-Pulse and Drift Calibration schemes

Is needed to eliminate pulse-to-pulse fluctuations and drifts from

- Cavity pickup cables (4 module) $5 fs m^{-1}K^{-1}, \pm 125 fs K^{-1} (\pm 25m), \Delta T \approx 1K$
- Downconverter (mixer)
- LO generation (dividers, amplifiers, filters)
- ADC CLK generation (timing system, less critical)

to have a robust machine operation.

1) Tracking the reference :

+ Demonstrated, e.g. with direct sampling

2) Injection of the reference signal :

3) Reflection at the cavity :

+ Compensates in addition antenna to cavity pickup

 $\theta_{A} = 2e-3/^{\circ}C, \theta_{P} = 0.2^{\circ}/^{\circ}C$

(Injector)

XFEL LLRF Development Direct Sampling

52

Direct Sampling RF Signal Receiver

- Sample the 1.3GHz signal directly with ADC without down converter
- Need precise clock signal, time jitter < 300 ps RMS
- ADS5474, 14-bit, 1.4GHz bandwidth, 400 MSPS

GEMEINSCHAFT

Direct Sampling ADC Evaluation at Lab

Direct Sampling ADC Evaluation at FLASH

Measurements by direct sampling ADC shown in (a),(b)Phase jitter: 0.05 degree RMS (10 MHz bandwidth)Amplitude jitter: 0.054% RMS (10 MHz bandwidth)

Measurements by monitor ADC with 250 kHz IF shown in (c),(d)Phase jitter: 0.09 degree RMS (500 kHz bandwidth)Amplitude jitter: 0.078% RMS (500 kHz bandwidth)

HELMHOLTZ

GEMEINSCHAFT

XFEL LLRF Development Piezo Control

56

Placement of the piezo control in LLRF system

Piezo control components

cavity	piezo	model	ACC3/M7	model	ACC5/M5	model	ACC6/M6
1	1	PI	4,93uF	Noliac	2,1uF	PI	4,13uF
	2	-	Unavailable	-	Unavailable	PI	4,45uF
2	1	PI	4,61uF	Noliac	2,22uF	PI	4,4uF
	2	-	Unavailable	-	Unavailable	PI	4,2uF
3	1	PI	4,91uF	Noliac	2,28uF	PI	4,21uF
	2	-	Unavailable	-	Unavailable	PI	4,1uF
4	1	PI	4,6uF	Noliac	3,12uF	PI	3,86uF
	2		Unavailable		Unavailable	PI	4,2uF
5	1	Noliac	2,6uF	Noliac	2,2uF	PI	4,22uF
	2		Unavailable	9	Unavailable	PI	4,28uF
6	1	Noliac	2,13uF	Noliac	2,13uF	PI	3.73uF
	2	-	Unavailable	-	Unavailable	PI	4,41uF
7	1	Noliac	2,22uF	Noliac	2,19uF	PI	4,69uF
	2		Unavailable	-	Unavailable	PI	4,41uF
8	1	Noliac	2,21uF	Noliac	2,17uF	PI	4,31uF
	2	•	Unavailable		Unavailable	PI	4,2uF

58

Automatic LF detuning of 3 ACC modules

The prototype piezo control system was designed, manufactured and tested (32 channel DAC board, piezo driver board - the 32 channels ADC board is under development).

The adaptive detuning compensation algorithm was implemented and tested.

> Red – before compensation Green – after automatic LF

HELMHOLTZ

ACC6 - Field in the cavities before and after compensation

XFEL LLRF Development SEU Immunity

61

Automatic generation of Tripple Module Redundancy for SEU tolerance

Resource	used	out of	percent
Slices	5288	13696	38
Slice Flip Flops	5366	27392	19
4 input LUTs	8307	27392	30
BRAMs	84	136	61
MULT18X18s	45	136	33

	Resource	used	out of
Ν	Slices	10410	13696
	Slice Flip Flops	10148	27392
	4 input LUTs	18520	27392
V	BRAMs	92	136
	MULT18X18s	135	136

TMR was applied only to computational path (it would be not possible to apply it to the whole circuit due to resource limitation)

percent

76

37

67

67

99

XFEL LLRF Development MIMO Controller

Controller design objectives

HELMHOLTZ

GEMEINSCHAFT

MIMO-Controller structure

Measurement results

- beam energy stability measurements done with synchrotron radiation camera (4BC2-Down)
- gain values are scaled proportional gains
- best achieved beam stability with MIMO-Controller so far

Stefan Simrock for the LLRF team, DESY XFEL meeting, Oct. 15, 2008

HELMHOLTZ

XFEL LLRF Development Cavity Simulator

67

Simulation

- Cavity simulator installed in ACC1 development system algorithms development for XFEL
 - Running on SIMCON DSP board
 - Baseband input and output
 - Features:
 - 4 cavities with LFD, pre-detuning.
 - Klystron model with nonlinearities (amplitude and phase).
 - High power distribution system (power dividers, phase shifters)
 - Measurement path simulation (attenuation and phase change)
 - Selectable output (probe, forward or reflected power)
 - Driven from ADCs or from internal tables (loaded through MATLAB)

The European X-Ray Laser Project X-Ray Free-Electron Lase

Cavity simulator driven by ACC1 controller in the development system

Documentation Projects

LLRF Documentation with SysML (1)

Modelling Process

- Identification of necessary system models, aspects and views
- Requirements analysis and requirements capture
- Definition of use cases
- Modelling of system hierarchies
- Modelling the system structure
- Modeling of system and subsystem interfaces
- Definition of activities and state machines
- Definition of parametric diagrams

SysML Artefacts used for Modeling

LLRF Documentation with SysML (2)

Example: Requirement Diagrams for LLRF

HELMHOLTZ

GEMEINSCHAFT

LLRF Documentation with SysML (3)

Example: Internal Block Diagram for LLRF Subsystem

73

LLRF Documentation with SysML (4)

Major model parts

 LLRF System model, Signal Library, Hardware Component Library, Units Library

Abstraction levels

• Functional, Structural, Physical (Deployment?) View

Model statistics

- about 270 use cases
- about 450 diagrams
- about 4200 model elements

Plan forward

- Add more and more details in depth (subsystems, blocks, diagrams ...) **Tools**
- Enterprise Architect 7.1
- SysML Enterprise Architect MDG Add-In

74

Sources for LLRF Information

LLRF Wiki Pages: <u>http://mskpc14.desy.de/wiki/index.php/Main_Page</u>

LLRF System Documentation: <u>http://tesla.desy.de/~simrock/EA/index.htm</u>

LLRF News: <u>http://wofwiki10.desy.de/xfel/index.php/LLRF_News</u>

