Project X and Collaboration with ILC

Steve Holmes

International Linear Collider Workshop 2008 University of Illinois at Chicago November 16, 2008

Outline

- Strategic Context
- Project X Facility Overview
- Project X Research, Design, and Development Plan
- Relationship to ILC

Strategic Context Fermilab Long Range Plan

- Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics.
- The Fermilab long-term strategy is fully aligned with the HEPAP/P5 plan:
 - Energy and intensity frontiers share strong reliance on accelerators

(www.science.doe.gov/hep/files/pdfs/P5_Report%2006022008.pdf)

Strategic Context P5 Recommendations

• Energy Frontier

- "The panel recommends for the near future a broad accelerator and detector R&D program for lepton colliders that includes continued R&D on ILC ... in support of the international effort."
- "The panel also recommends R&D for alternative accelerator technologies, to permit an informed choice when the lepton collider energy is established."

• Intensity Frontier

 "The panel recommends an R&D program in the immediate future to design a multi-megawatt proton source at Fermilab and a neutrino beamline to DUSEL..."

Strategic Context

Evolution of the Accelerator Complex

- Energy Frontier
 - Tevatron \rightarrow ILC or Muon Collider as options for the Fermilab site
- Intensity Frontier
 - NuMI \rightarrow NOvA \rightarrow very long baseline/mu2e \rightarrow multi-MW Proton Source
 - Initial stages supported by ANU (NOvA): 700 kW
- Fermilab view: Most effective implementation of a multi-MW proton facility would be based on a superconducting 8 GeV linac
 - Alignment with ILC technology development
 - Flexibility for the future
 - aka "Project X"

Project X Initial Configuration

- The P5 report identified the mission need based on:
 - A neutrino beam for long baseline neutrino oscillation experiments.

A new 2 megawatt proton source with proton energies between 50 and 120 GeV would produce intense neutrino beams, directed toward a large detector located in a distant underground laboratory.

 Kaon and muon based precision experiments exploiting 8 GeV protons from Fermilab's Recycler, running simultaneously with the neutrino program.

These could include a world leading muon-to-electron conversion experiment and world leading rare kaon decay experiments.

 A path toward a muon source for a possible future neutrino factory and, potentially, a muon collider at the Energy Frontier. This path requires that the new 8 GeV proton source have significant upgrade potential.

Project X Initial Configuration

- Project X Design Criteria
 - 2 MW of beam power over the range 60 120 GeV;
 - Simultaneous with at least 600 kW of beam power at 8 GeV;
 - Compatibility with future upgrades to 2-4 MW at 8 GeV

ILC08 – S. Holmes

Project X Initial Configuration Provisional Siting

Project X Facility Overview High Level Performance Goals

Linac			
Particle Type	H-		
Beam Kinetic Energy	8.0	GeV	
Particles per pulse	1.6×10 ¹⁴		
Linac pulse rate	5	Hz	
Beam Power	280-1000	kW	Initially:
Recycler			2 linac beam
Particle Type	protons		pulses/1.4 seconds
Beam Kinetic Energy	8.0	GeV	Remaining (5) pulses
Cycle time	1.4	sec	available for
Particles per cycle to MI	1.6×10 ¹⁴		- Maintain 2 MW
Particles per cycle to 8 GeV progra	am 1. <u>6×10¹⁴</u>		- Future upgrades
Beam Power to 8 GeV program	140-860	kW	- Diagnostics
Main Injector			
Beam Kinetic Energy (maximum)	120	GeV	
Cycle time	1.4	sec	
Particles per cycle	1.7×10 ¹⁴		
Beam Power at 120 GeV	2100	kW	

Project X RD&D Plan

- The primary goal of the Research, Design, and Development (RD&D) program is to support Critical Decision 2 in 2012, leading to a 2013 construction start.
 - Design and technical component development;
 - Fully developed baseline scope, cost estimate, and schedule;
 - Formation of a multi-institutional collaboration capable of executing both the RD&D plan and the follow-on construction project.
- Secondary goals:
 - Coordination of Project X and ILC scrf programs to provide maximal benefit to each;
 - Retain alignment of Project X and the Neutrino Factory and Muon Collider programs to assure that Project X could serve as a stepping stone to either facility.

Project X RD&D Plan Near-term Strategy

- Develop an Initial Configuration Document
 - Meeting the design criteria and program goals
 - ICD subject to configuration control
 - ⇒ Complete Rev. 1.0: available at http://projectx.fnal.gov/
- Revise/update the current RD&D Plan
 - Based on the ICD
 - Review existing plan to emphasize reduction of risk
 - \Rightarrow In process, expect to have draft available for November Collaboration Meeting
- Create a preliminary cost estimate
 - Based on the ICD
 - \Rightarrow In process

Project X RD&D Plan Near-term Strategy

- Establish a multi-institutional collaboration for the RD&D phase
 - Fermilab holds overall responsibility as host laboratory;
 - Achieve maximal alignment with institutional expertise and experience;
 - Recognize it would be natural for responsibilities to carry over into the construction phase.
 - Retain "collaborating institution" relationship with the ILC/GDE through the R&D phase
 - \Rightarrow Collaboration Meeting scheduled November 21-22, 2008 at Fermilab
- CD-0 in FY2009
 - Coordinated with very long baseline (DUSEL) and mu2e
 - Based on:
 - ≻ ICD
 - Preliminary cost estimate
 - ➢ P5 mission definition

Relationship to ILC: Linac Technology

Relationship to ILC: ILC/SRF/PX Joint Development Strategy

- 38 ILC-like (plus 8 β=0.8 ILC similar) cryomodules are required for Project X. In detail they will not be identical to ILC:
 - Gradient: 25 MV/m
 - Beam current: 20 mA \times 1.25 msec \times 5 Hz
 - Focusing: Quadrupole element required in each CM
 - Consistent with upgrade path
 - ightarrow 1.25 \rightarrow 2.5 msec pulse length
 - $> 5 \rightarrow 10$ Hz pulse rate

4 MW at 8 GeV

- Development Plan aligned with ILC/GDE
 - Integrated srf effort at Fermilab, responsible for ILC and Project X
 - Development strategy based on ILC "plug compatibility"
 - Retain ILC cavity spacing and primary interface dimensions
 - CAF and ILCTA_NML are constructed via the SRF program:
 - > 1 CM/month assembly capability;
 - Beam testing of a complete rf unit (ILC S2)

Relationship to ILC: ILC/SRF/PX Joint Development Strategy

- Development Plan: Cryomodule Assembly
 - CM1: TESLA Type III
 Based on DESY supplied cavities (complete)
 - CM2: TESLA Type III
 - Based on U.S. supplied cavities
 - − CM3: Type IV.1
 > U.S. cavities
 - Project X preliminary
 - CM4: Type IV.2
 Project X prototype

Relationship to ILC: ILC/SRF/PX Joint Development Strategy

- Industrialization
 - Production of 46 1.3 GHz CMs over a 2-3 year period is consistent with CAF capabilities in ~2013; however, the production rate remains well <u>below</u> that required by ILC.
 - ⇒This activity could represent the initial phase of an industrialization buildup for ILC (in the U.S.).

Project X RD&D Plan Integrated ILC/SRF/Project X Plan

<u> </u>	FY08	FY09	FY10	FY11	FY12	FY13
ILC C+CM	CM1	CM2		CM3 (Type IV)	CM4 (PX)	svs tst
ILC RF Power		MBK m	PFN nodulator			
SRF Infrastructure				NML complete		CAF complete (1 CM/month)
Project X		CDR	Fi	FE decision nal gradient decis	rf unit s sion	ys tst

Relationship to ILC: ILC/PX Joint Development Strategy

- Other opportunities:
 - E-cloud studies and simulations, including participation in CESR TA
 - RF power generation, distribution, controls, and diagnostics share many features in common.
 - Conventional facilities designs provide opportunities for common solutions.
 - ILCTA_NML rf unit test will fulfill many of the requirements of S2, and will be available for studies with both PX and ILC beam current parameters.
 - Construction and operational experience with Project X will be invaluable in planning/executing ILC (if PX were to precede ILC, ditto for XFEL)

 \Rightarrow Essentially all these efforts are using shared (people) resources.

Project X RD&D Plan Collaboration Plan

- The intention is to organize and execute the RD&D Program via a multi-institutional collaboration.
 - Goal is to assign collaborators complete sub-projects ⇒ responsibility for design, engineering, cost estimating, and potentially construction if/when Project X proceeds.
 - Project X R&D Collaboration to be established via a Collaboration Memorandum of Understanding (MOU) outlining basic goals of the collaboration, and the means of organizing and executing the work.
 - It is anticipated that the Project X RD&D Program will be undertaken as a "national project with international participation". Expectation is that the same structure of MOUs described above would establish the participation of international laboratories.

Project X RD&D Plan Collaboration Plan

- A draft MOU covering the period through CD-2 is currently circulating for comment among the following potential U.S. collaborators:
 - ANL
 - BNL
 - Cornell
 - LBNL
 - ORNL/SNS
 - MSU
 - TJNAF
 - SLAC
 - ILC/GDE
- Hope to finalize/sign at the initial Project X Collaboration Meeting scheduled for November 21-22, 2008 at Fermilab

Summary

- Project X is central to Fermilab's strategy for future development of the accelerator complex:
 - Energy Frontier: Aligned with ILC technology development; preserves Fermilab as a potential site for ILC or a Muon Collider
 - Intensity Frontier: Ultimate goal is 2 MW beam to very long v baseline and >1 MW to mu2e and other rare processes experiments
- An initial configuration has been established meeting requirements as specified in the P5 report
 - >2 MW at 60-120 GeV, simultaneous with >600 kW at 8 GeV
- Project X RD&D plan developed (through CD-2)
 ⇒ Integrates efforts on Project X, ILC, and SRF
- Collaboration being formed
- More information at: http://projectx.fnal.gov/