

ILC 08 Final Plenary Summary

CFS - CONVENTIONAL FACILITIES AND SITING GROUP

V. Kuchler, J. Osborne, A. Enomoto

CFS Parallel Session Topics

- Process Cooling Water and HVAC Review
- Klystron Cluster Design
- CLIC/ILC and XFEL/ILC Collaboration Planning
- Minimum Machine Design
- Alternate Site and Tunnel Configuration

Process Cooling Water and HVAC Review

<u>Session Objective</u>: Select one of the alternatives presented as the baseline to be included in the Technical Design Report (pending Klystron Cluster R&D results).

- Alternative Process Water Configurations were Presented by FNAL and KEK
- Talks were also Presented for ILC HVAC Design, CLIC Process Water and HVAC Design and Life Safety Aspects of Ventilation Systems Design
- An Alternative was Selected by M. Ross as a Backup Design to the Klystron Cluster Alternative
- This will Conclude the Current Value Engineering Exercise for the ILC Process Cooling Water System

RF Water Delta T		25C PT (45F PT)									40C PT (72F PT)							Kly
Impact / Issues (by others) Cost to be added (could be by others?)			cheme	5	Scheme 6			Scheme 7			Scheme 5			Scheme 6			Scheme 7	Cluster- Aug 2008
Major IMPACT/Issues? SS=Sch 10 304 Stainless in <u>Tunnel only</u> ; CPVC=Sch 80 CPVC plastic pipe; CS= Std Sch (40) Carbon Steel		SS	CPVC	cs	SS	CPVC	cs	SS	CPVC	cs	SS	CPVC	cs	ss	CPVC	cs	SS	SS
Overall Water Delta T	°⊅C °⊅F				16.5 29.7			18.1 32.6			20.3 36.5			19.6 35.2			22.4 40.4	22.1 39.8
"First-Cost <u>" Savings</u> in % - Process/Air Treatment WBS 1.7.3. & 1.7.5		28%	30%	31%	23%	25%	26%	30%	32%	33%	31%	33%	32%	26%	28%	27%	35%	-47%
RF Loads and Circulators reduced flow																		
RF Modltrs and Plse Transfm-flow/temp																		
Watercooled wygde cooling design (by others)																		
Kly Clstr's RF Pipe Cooling by others												بيا						
High Space Temperature ok?		~45	°C (11	3°F)							~4	5°C (113	°F)					
Equipment Insulations??																		
50% reduction in air heat load possible?																		
Finalize HLRF Heat Load table? Collector issue?																		
Rack chiller impact ok? / Rework rack arrngmt??																		
Confirm reduced Heat load from racks?																		
Cost for increased maintenance due high space																		
Cost of portable cooling for maintenance																		
Pump Recirc loop at Collector~ \$2M??																		
Pump Recircloop (modul/P.Transfmr)~ \$2M ??																		
Electrical Reduction		~ (- 2.3 N	1W)							2	(- 2.3 M	W)					
Operational cost reduction			~ (-??)								~ (-??)						
Electrical addition					~	+ 3 M	N	~	+ 1 M	W				~ +	- 3 MV	/	~+ 1 MW	??
Operational cost addition					+ ??			+ ??					+ ??		+ ??			
Pipe Press & Temp limit issues																		
"Clean Water" Compatibility Issue																		

Klystron Cluster Design

<u>Session Objective</u>: Establish an understanding within the technical groups of the CFS design and cost savings associated with this Klystron Cluster alternative.

- CFS Analysis of Klystron Cluster Alternative was Presented
- Discussion with Main Linac Area System and Technical System Representatives Followed
- Agreement was Reached that CFS Analysis was Adequate and Acceptable as Provided

CLIC/ILC Collaboration Planning

Session Objective: Develop plans of action with milestones for the ILC/CLIC collaboration efforts in the coming year.

- Several Items were Identified for 2009
 - 3D Modeling for ILC Using CATIA Software
 - Collaboration on Alternate Tunnel Configuration
 - Drawings for ILC RF Cluster Design
 - Assist in Shallow Site Studies
 - Study for ILC Installation Methods
 - Continuing Collaboration on Process Cooling and HVAC Design
 - Development of a Common Document Describing Underground Safety Considerations for ILC and CLIC
- Specific Resources will be Identified in the Weekly CFS Video/Webex Meetings

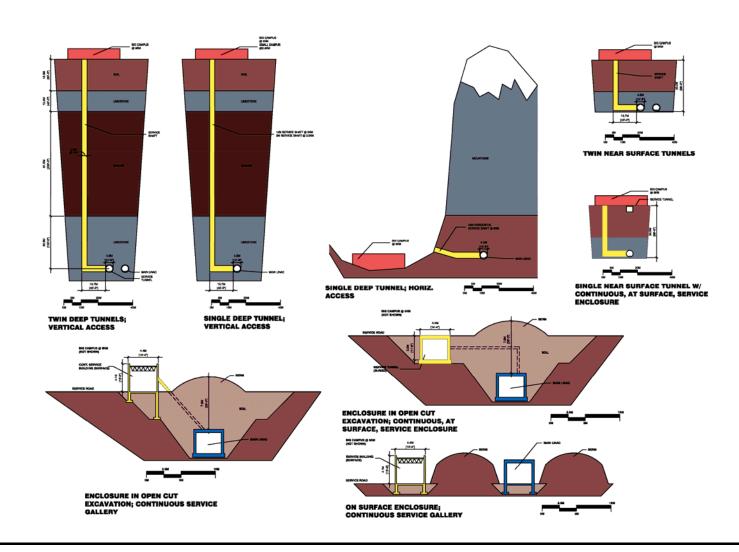
XFEL/ILC Collaboration Planning

Session Objective: Develop plans of action with milestones for the ILC/XFEL collaboration efforts in the coming year.

- Discussion Centered on Upcoming CFS Visit to DESY in December, 2008
- Agenda Items Identified:
 - Process Water Systems
 - Electrical Requirements
 - HVAC Design
 - Civil Construction Process
 - Criteria Identification and Configuration Control
 - Safety Issues
 - EDMS
- 6 ILC CFS Members and 1 ILC Project Manager will Participate

Minimum Machine Design

Session Objective: Identify specific tasks and milestones for CFS evaluation of the Minimum Machine Design concept and how it might be included in the TDP


- CFS has Re-established the Area System Points-of-Contact
- 3D Software will be Employed to Facilitate the Analysis of the New Machine Configuration and Alternatives
- Cost Analysis for CFS Impact of Various
 Alternative Configurations will also Need to be
 Completed

Alternate Site and Tunnel Configuration

Session Objective: Develop the CFS plan to evaluate all tunnel configuration alternatives with specific emphasis on what can be completed by the AAP Review in April, 2009 and through 2010.

- Work Completed to Date was Presented
- The Entire CFS Group will Contribute to this Effort as well as Collaboration Partners
- Substantial Progress is Anticipated by the AAP Review in April, 2009
- Work will be Completed in 2009

