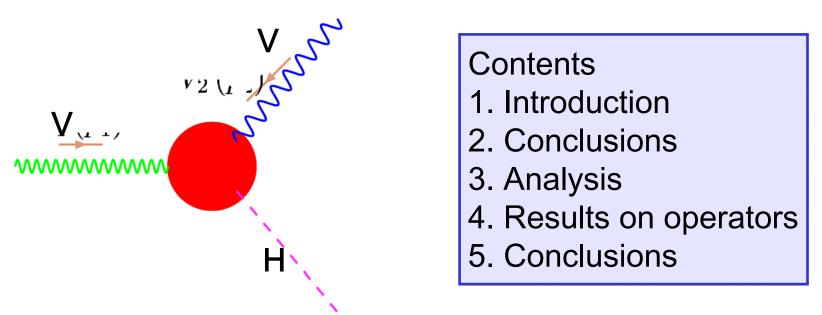
Presice measurement of the Higgs-boson electroweak couplings at Linear Collider and its physics impacts

Yu Matsumoto (KEK) 2008,11,18 @LCWS08



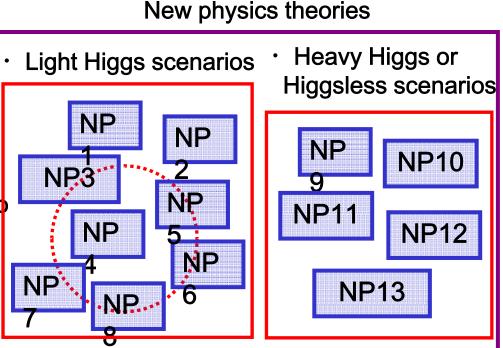
In collaboration with K.Hagiwara (KEK) and S.Dutta (Univ. of Delhi)

1-1. Motivation

- \cdot W, Z-boson discovery
- · top-quark discovery
- W,Z boson precision measurements

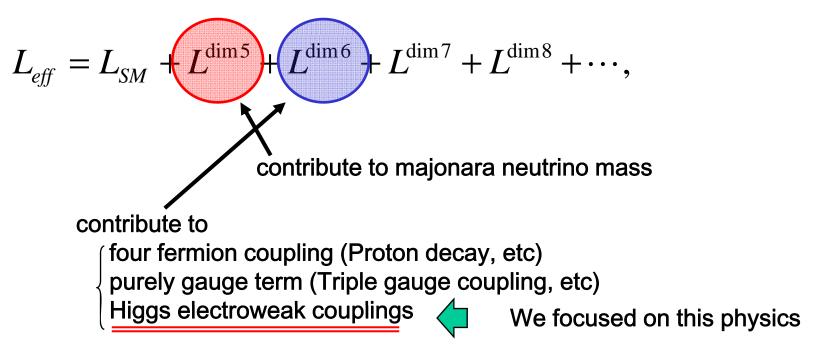
LHC LC

- LHC can probe light Higgs scenario
- precision measurements of the Higgs-boson properties



1-2. Effective Lagrangian with a Higgs doublet

New physics can be represented by higher mass dimension operators



We can write the effective Lagrangian including Higgs doublet as

$$L_{eff} = L_{SM} + \underbrace{\sum_{i} \frac{f_i}{\Lambda^2} O_i^{(6)}}_{i}$$

New physics effects. Here we consider only dimension 6

and the operators are ...

1-3. dimension 6 operators including Higgs 2 point function, TGC, vertices include Higgs boson Precision measurement (SLC, LEP, Tevatron) $\mathcal{L}_W^+, Z, \gamma$ Zwwww w-Triple gauge couplings W^-, Z, γ W, Z, γ W, Z, γ H(LEP2,Tevatron) Dimension 6 operators LHC S 0 $WW ZZ Z\gamma \gamma WW\gamma WWZ HWW HZZ HZ\gamma H\gamma Hgg$ $\mathcal{O}_{\phi,1} = \left| (D_{\mu} \Phi)^{\dagger} \Phi \right|$ $\Phi^{\dagger}(D^{\mu}\Phi)$ $\sqrt{}$ $\sqrt{}$ V $\mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}^{\mu\nu} \hat{W}_{\mu\nu} \Phi$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ V $\sqrt{}$ $\sqrt{}$ V

 $\sqrt{}$

V

 $\sqrt{}$

 $\sqrt{}$

V

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\mathcal{O}_W = (D^\mu \Phi)^\dagger \hat{W}_{\mu\nu} (D^\nu \Phi)$

 $\mathcal{O}_B = (D^\mu \Phi)^\dagger \hat{B}_{\mu\nu} (D^\nu \Phi)$

 $\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \Phi$

 $\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}^{\mu\nu} \hat{B}_{\mu\nu} \Phi$

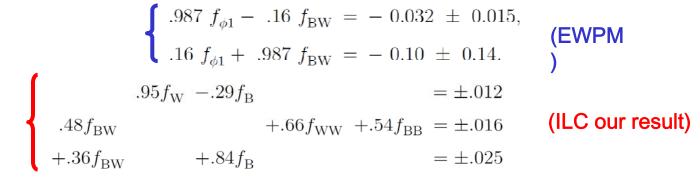
 $\mathcal{O}_{\phi,4} = (\Phi^{\dagger}\Phi)(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)$

 $\mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi)$

 $\mathcal{O}_{aa} = \Phi^{\dagger} \hat{G}^{\mu\nu} \hat{G}_{\mu\nu} \Phi$

2. Conclusions

The most accurately measured combinations of dim-6 operators are sensitive to the quantum corrections



- ILC experiment can constrain completely different combinations of dim-6 operators from EWPM
 We can select new physics by multi-dimensional operator
 These accuracy of the combinations are not affected from systematic errors ex) luminosity uncertainty
- e⁻ beam polarization plays an important role to obtain high accuracy
- High energy experiments $\sqrt{s} > 500GeV$) are important for the measurements of $HZ\gamma$ couplings

3-1. Optimal observable method

The differential cross section can be expressed by using non-SM couplings

 χ^2 can be expressed in terms of non-SM couplings

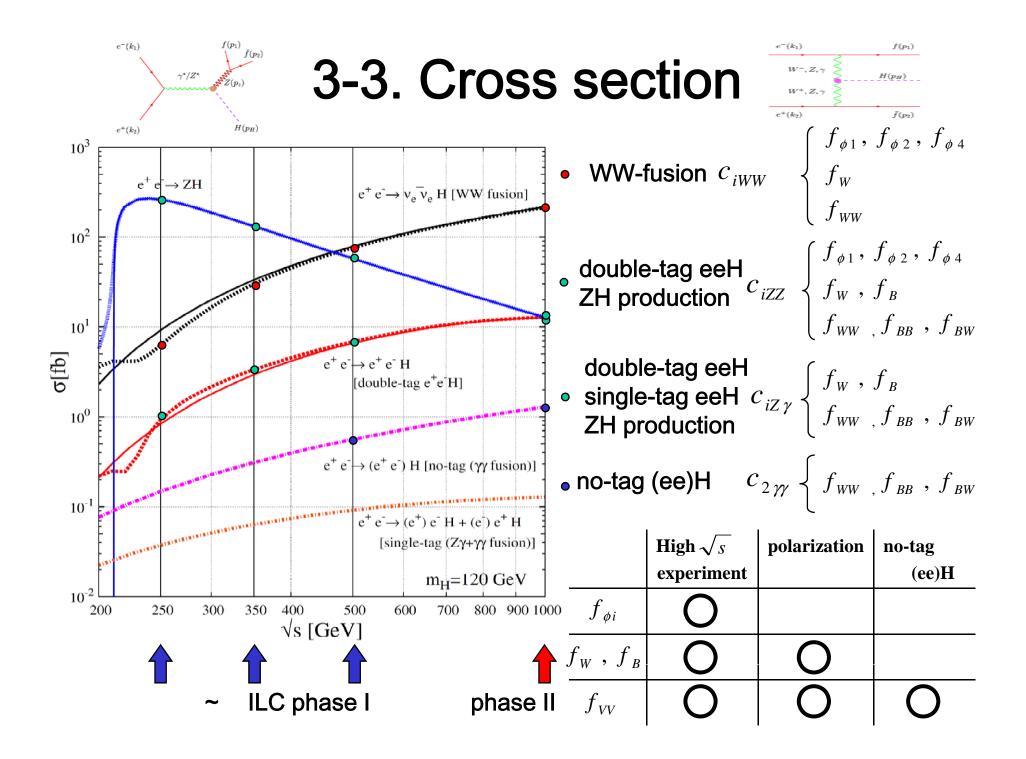
 $\Delta c_i = \sqrt{V_{ii}}$

makes V^{-1} larger rightarrow errors become small

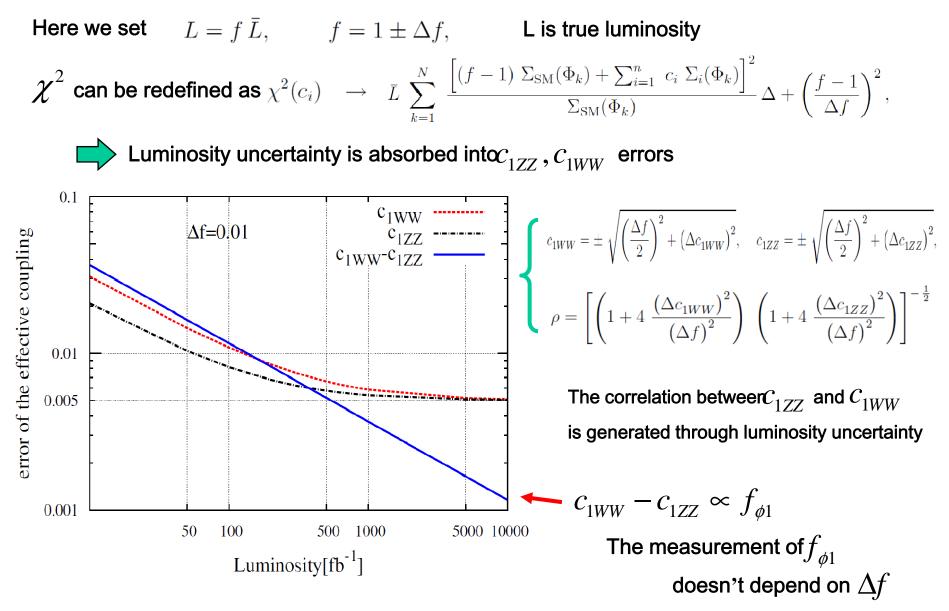
3-2. Operators and Vertices, Form Factors

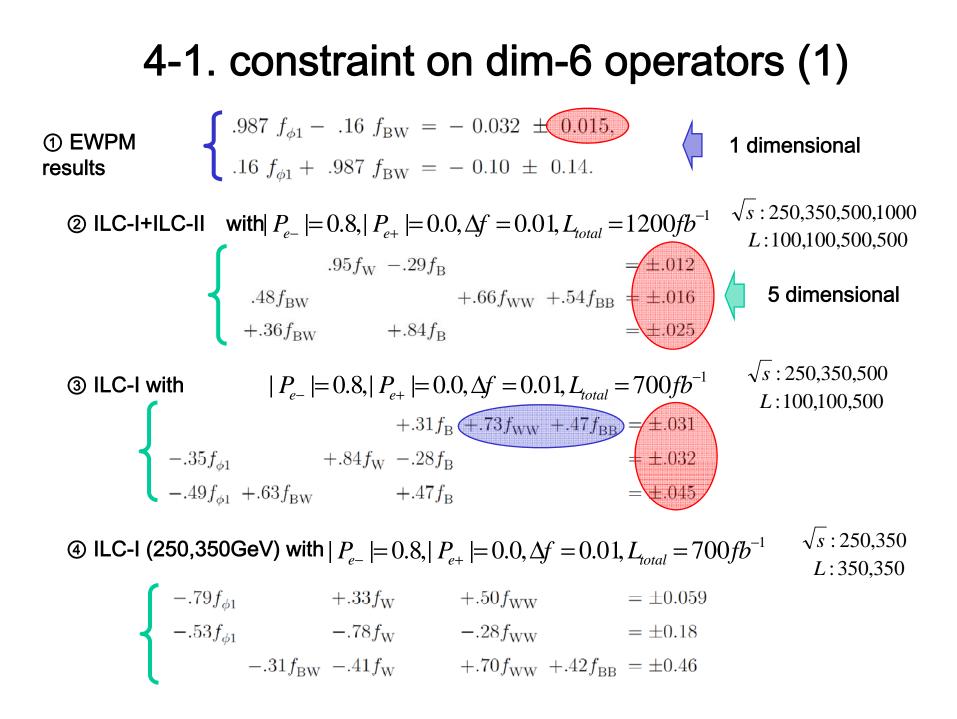
We exchange the operators into HVV interaction vertices as the experimental observables $\sum_{i=1}^{n} f_{i} \circ O^{(0)} = (1 + i) \sum_{i=1}^{n} g_{i} m_{i} = (1 + i) \sum_{i=1}^{n} g_{i} m_{i}$

$$\begin{aligned} L_{eff} &= L_{SM} + \sum_{i} \frac{J_{i}}{\Lambda^{2}} O_{i}^{(6)} = (1 + c_{1ZZ}) \frac{g_{Z}m_{Z}}{2} HZ_{\mu}Z^{\mu} + (1 + c_{1WW}) gm_{W} HW_{\mu}^{+}W^{-\mu} \\ &+ \frac{g_{Z}}{m_{Z}} \sum_{V=V,Z} [c_{2ZV} HZ_{\mu\nu}V^{\mu\nu} + c_{3ZV} ((\partial_{\mu}H)Z_{\nu} - (\partial_{\nu}H)Z_{\mu})V^{\mu\nu}] \\ &+ \frac{g_{Z}}{m_{Z}} [c_{2WW} HW_{\mu\nu}^{+}W^{-\mu\nu} + \frac{c_{3WW}}{2} (((\partial_{\mu}H)W_{\nu}^{-} - (\partial_{\nu}H)W_{\mu}^{-})W^{+\mu\nu} + h.c.)] + \cdots \\ &\times c_{i} = (c_{iZZ}, c_{2Z\gamma}, c_{3Z\gamma}, c_{2\gamma\gamma}, c_{iWW}) \text{ are the linear } f_{i} \\ &\int (c_{1ZZ} = \frac{w^{2}}{4\Lambda^{2}} (f_{B} + 3f_{\phi 4} - 2f_{\phi 2}), \\ &c_{2ZZ} = \frac{m_{Z}^{2}}{\Lambda^{2}} (-s_{W}^{+}f_{BB} - s_{W}^{2}c_{W}^{2} (f_{BW} - c_{W}^{+}f_{WW}), \\ &c_{2Z\gamma} = \frac{m_{Z}^{2}}{\Lambda^{2}} (-s_{W}^{+}f_{BB} - s_{W}^{2}c_{W}^{2} (f_{BW} - c_{W}^{+}f_{WW})) \\ &c_{3ZZ} = \frac{m_{Z}^{2}}{2\Lambda^{2}} (-s_{W}^{2}f_{B} - c_{W}^{2} f_{WW}), \\ &c_{3ZZ} = \frac{m_{Z}^{2}}{4\Lambda^{2}} (f_{B} - f_{W})s_{W}c_{W}, \\ &c_{3Z\gamma} = \frac{m_{Z}^{2}}{\Lambda^{2}} (-f_{BB} + f_{BW} - f_{WW})c_{W}^{2}s_{W}^{2}, \\ &\vdots EW \text{ precision, S and T} \\ &c_{2\gamma\gamma} = \frac{m_{Z}^{2}}{\Lambda^{2}} (-f_{BB} + f_{BW} - f_{WW})c_{W}^{2}s_{W}^{2}, \\ &\vdots Triple Gauge Couplings \end{aligned}$$



3-4. Luminosity uncertainty

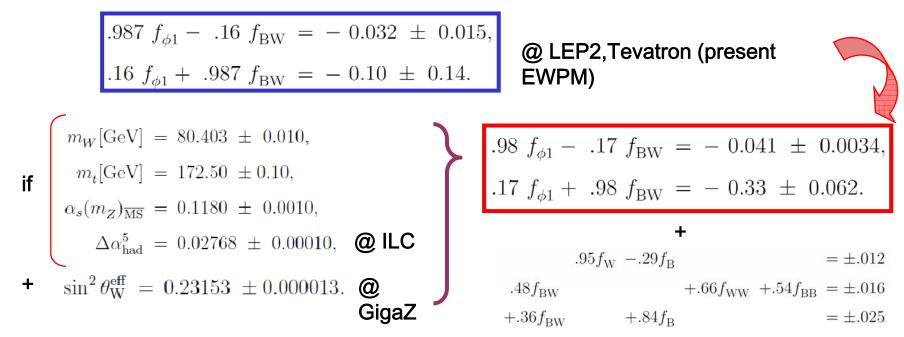




4-2. Constraints on dim6-Operators (2) combining with LEP and future experiments

EWPM will be also improved at ILC experiments

are



The results combining our HVV measurements at ILC and EWPM at ILC

5. Conclusions

- We obtain the sensitivity to the ILC experiment on 8 dim 6
- The t-channel processes of $e e \to VVH$ and $e e \to e e H$ at high energy experiment are important to measure $HWW, HZ\gamma$ and $H\gamma\gamma$ couplings
- Polarization is important to obtain high accurate measurement
- Coupling Luminosity uncertainty affects c_{1ZZ}, c_{1WW} measurements, but only one combination of the operators $3f_{\phi 4} - 2f_{\phi 2}$ is affected
- The expected accuracy of the measurements will be sensitive to quantum corrections as same accuracy as EWPM.
 - And its constraints are in the multi dimensional space.