Precision ew measurements at calibration/Z-pole running

Gudrid Moortgat-Pick (IPPP) 18/11/08

- RDR positron source
- Calibration needs
- Role of polarization
- Physics
- Conclusion and outlook

Thanks a lot to the organizer for providing webex!

RDR Positron Source

- Positron source in RDR:
 - undulator-based source
 - •P(e+)~45%
 - •Changes needed to do calibration at the Z-pole?
 - How to optimize this option?
 - •Could we replace GigaZ via calibration runs?
- Small positron polarization available for physics!

Outcome of polarimetry+energy workshop

- in more detail see executive summary, arXiv:0808.1638 (sent to GDE)
- Since baseline design provides small polarization
 - •Flipping of helicity is required or destroy polarization completely (see talk of S. Riemann, source session)
 - This polarization could be enhanced to ~45% (with bunch compressor)
- Spin rotation:
 - 'cheap' and quick kicker system before pre-DR, moved to 400 MeV (see talk of K. Moffet, source session)
- Polarimetry requirements (see talks of J. List, e.g. top session)

Calibration Needs

- How many Z's are needed for calibration?
 - Experience from LEP2
- Calibration needed after annual shutdown
 - After each annual shutdown:10 pb/detector + couple of pb's over the year
- No Z-pole calibration needed after push-pull
- For calibration:
 - large emittance, low lumi tolerable (Scope Document 2)
- L_{cal} ? Estimates in the range of $7x10^{31}$ -- $7x10^{32}$
 - Has still to be worked out
 - Therefore requirements based on # of Z-events

Physics: Z-pole data

- Why do we need such data a.s.a.p.?
 - Discrepancy between A_{LR} and A_{FB}

SLD:
$$\sin^2 \theta_{\text{eff}} = 0.23098 \pm 0.00026 \quad (A_{LR}(\ell)),$$

LEP: $\sin^2 \theta_{\text{eff}} = 0.23221 \pm 0.00029 \quad (A_{FB}(had)).$

— most sensitive tests of the Standard Model via measurements of the ew observables as $\sin^2\theta_{eff}$

We do need it already now !!!

A_{LR} and $\sin^2\theta_{eff}$

Accuracy in sin²Θ_{eff}

$$A_{\rm LR} = \frac{2(1-4\sin^2\!\theta_W^{\rm eff})}{1+(1-4\sin^2\!\theta_W^{\rm eff})^2}$$

- → precision in ALR directly transferred to sin² ⊕ eff
- GigaZ will provide Δ sin²Θ_{eff} ~1.3 x 10⁻⁵ (if Blondel scheme)
- → only electron polarization at GigaZ: ~9.5 x 10⁻⁵
- current value: 16 x 10⁻⁵
- What could we gain with a 'fraction' of GigaZ ?

Strategy

- Collect calibration data from several years (maybe 5 y, proposal?)
- Collect data from dedicated Z-pole runs with low lumi (25 days / year)
- 'Full' GigaZ would take a few 10³ low lumi days (on basis of L_{cal}=7x10³¹)
 - Makes no sense to aim for that
 - In case one had higher L_{cal}, one could think about that!
- GigaZ after ILC physic runs is late anyway....2025? (personal comment)
- But already with such a fraction of the GigaZ accuracy we gain a lot in physics!

Physics gain vs. required precision

What are the important input quantities?

– Mass of top:

Heinemeyer, Hollik, Weber, Weiglein '08

current theoretical:		
intrinsic	$\Delta m_W^{\mathrm{intr,today}} \approx 4 \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm intr,today} \approx 4.7 \times 10^{-5}$
parametric		
$\delta m_t = 1.2 \text{ GeV}$	$\Delta m_W^{\mathrm{para,m_t}} \approx 11 \; \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para, m_t} \approx 3.6 \times 10^{-5}$
$\delta(\Delta\alpha_{\rm had}) = 35 \times 10^{-5}$	$\Delta m_W^{\mathrm{para},\Delta\alpha_{\mathrm{had}}} \approx 6.3 \; \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para, \Delta \alpha_{had}} \approx 12 \times 10^{-5}$
$\delta m_Z = 2.1 \text{ MeV}$	$\Delta m_W^{\mathrm{para, m_Z}} \approx 2.5 \; \mathrm{MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para,mz}} \approx 1.4 \times 10^{-5}$

future parametric		
$\delta m_t = 1 \text{ GeV}$	$\Delta m_W^{\mathrm{para,m_t}} \approx 6 \; \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para, mt} \approx 3 \times 10^{-5}$
$\delta m_t = 0.1 \text{ GeV}$	$\Delta m_W^{\mathrm{para,m_t}} \approx 1 \; \mathrm{MeV}$	$\Delta \sin^2 \theta_{\rm eff}^{\rm para, m_t} \approx 0.3 \times 10^{-5}$
$\delta(\Delta\alpha_{\rm had}) = 5 \times 10^{-5}$	$\Delta m_W^{\mathrm{para},\Deltalpha_{\mathrm{had}}}pprox 1~\mathrm{MeV}$	$\Delta \sin^2 \theta_{ m eff}^{ m para}, \Delta \alpha_{ m had} \approx 1.8 \times 10^{-5}$

- only progress if Δ_{exp} ≤ Δ_{theo}

What is achievable with low lumi Z-data?

Strategy:

- 10 pb⁻¹/ detector after annual shutdown + couple of pb⁻¹ / year
- Collect Z-data for each calibration and dedicated low lumi runs on the Z-pole
- About 0.6 fb⁻¹ needed (~ 100 days) to achieve sin²θ_{eff} ~3x 10⁻⁵
 (in collaboration with J. List, K. Moenig, S. Riemann, R. Settles,...)
- Why is 3 x 10⁻⁵ useful and best value for now?
 - only progress if Δ_{exp} ≤ Δ_{theo}
 - $-\Delta_{theo}$ dominated by Δm_{top}
 - currently about $\Delta m_{top} \sim 1.2$ GeV leading to $\Delta \sin^2 \theta_{eff} \sim 3.5 \times 10^{-5}$
 - with exp. LHC $\Delta m_{top} \sim 1$ GeV one ends up $\Delta \sin^2 \theta_{eff} \sim 3 \times 10^{-5}$
 - No further gain as long as not $\Delta m_{top} \sim 0.1$ GeV! (ILC precision)

Possible low lumi Z-data: ΔA_{LR}(stat)

	$\int {\cal L}$	No. of Z's	$\int_{ m days} \mathcal{L}_{ m cal}$	$P(e^{-})$	$P(e^+)$	$\Delta A_{ m LR}$	$\sin^2 \theta_{\mathrm{eff}}$	
	$6 \; { m pb}^{-1}$	1.8×10^{5}	1	90%	0	2.7×10^{-3}	3.4×10^{-4}	
				90%	40%	3.3×10^{-3}	4.2×10^{-4}	
				90%	60%	2.2×10^{-3}	2.8×10^{-4}	
1	24 pb^{-1}	7.3×10^{5}	4	90%	0	1.5×10^{-3}	1.9×10^{-4}	
				90%	40%	1.6×10^{-3}	2.1×10^{-4}	
				90%	60%	1.1×10^{-3}	1.4×10^{-4}	
	60 pb^{-1}	1.8×10^{6}	10	90%	0	1.1×10^{-3}	1.4×10^{-4}	
				90%	40%	1.0×10^{-3}	1.3×10^{-4}	
				90%	60%	7.0×10^{-4}	8.9×10^{-5}	
	$0.6 \; {\rm fb^{-1}}$	18×10^{6}	100	90%	0	8.1×10^{-4}	1.0×10^{-4}	
				90%	40%	3.3×10^{-4}	4.2×10^{-5}	
				90%	60%	2.2×10^{-4}	2.8×10^{-5}	
	$0.9 \; \mathrm{fb^{-1}}$	27×10^{6}	150	90%	0	7.9×10^{-4}	1.0×10^{-4}	
				90%	40%	2.7×10^{-4}	3.4×10^{-5}	
				90%	60%	1.8×10^{-4}	2.3×10^{-5}	
	$1.2 \; {\rm fb^{-1}}$	36×10^{6}	200	90%	0	7.9×10^{-4}	1.0×10^{-4}	
				90%	40%	2.3×10^{-4}	3.0×10^{-5}	
				90%	60%	1.6×10^{-4}	2.0×10^{-5}	

Physics gain with $\sin^2\theta_{eff} = 3 \times 10^{-5}$

- Hints for new physics in worst case scenarios:
 - Only Higgs @LHC
 - No hints for SUSY
- Deviations at Z-pole
 - Hints for SUSY
- Powerful test!
 - We should not miss this option

Heinemeyer, Hollik, Weber, Weiglein '07 + Power report 0.2316 0.2315 $(\sin^2 \theta_{nn})^{exp} = today \pm \sigma^{10}$ ან ენ 0.2314 0.2313 squarks & gluinos: $M_{0,11,0}$ =6 $(M_{0,11,0})^{(PG)}$; $\Lambda_{1,0}$ =6 $(\Lambda_{1,0})^{(PG)}$; m_{ξ} =6 $(m_{\xi})^{(PG)}$ steptons, neutralinos & charginos. $\mathbf{M}_{i,j}$ =scale $(\mathbf{M}_{i,j})^{SPG}$, $\boldsymbol{\Lambda}_{i}$ =scale $(\boldsymbol{\Lambda}_{i,j})^{SPG}$, $\mathbf{M}_{i,j}$ =scale $(\mathbf{M}_{i,j})^{SPG}$ 0.2312 $m_{\widetilde{\gamma}^{i}_{\cdot}}[GeV]$

What's the role of polarization?

Derive the statistical uncertainty of A_{LR}
 If only polarized electrons:
 Δ A_{LR} determined by polarimeter uncertainty

$$A_{LR}$$
= 1 / P(e-) x [$\sigma_L - \sigma_R$] / [$\sigma_L + \sigma_R$]

- Pure error propagation: uncertainty depends on $\Delta\sigma_L$, $\Delta\sigma_R$, $\Delta P/P$
- For large statistics, σ (ee -> Z -> had) ~ 40 nb: main uncertainty from ΔP/P~ 0.5 % up to 0. 25%
- Since 'only' calibration and begin of ILC, we assume $\Delta P/P = 0.5 \%$
- Higher P(e⁻) better, we assumed 90%

Blondel Scheme

- Two polarized beams available
 - Express A_{LR} only by cross sections

$$\sigma = \sigma_{\text{unpol}}[1 - P_{e^{-}}P_{e^{+}} + A_{\text{LR}}(P_{e^{+}} - P_{e^{-}})],$$

$$A_{\text{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{+-} - \sigma_{-+} - \sigma_{--})(-\sigma_{++} + \sigma_{+-} - \sigma_{-+} + \sigma_{--})}{(\sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--})(-\sigma_{++} + \sigma_{+-} + \sigma_{--})}}$$

- Pure error propagation: uncertainty depends on $\Delta\sigma_{LL}$, $\Delta\sigma_{LR}$, $\Delta\sigma_{RL}$, $\Delta\sigma_{RR}$ not on ΔP/P
- Only relative measurements wrt flipping polarization needed $\Delta P / P = 0.5 \%$ should be sufficient
- Some calibration time in LL and RR required assumed 10%, but that's not the optimum (see later)

Dependence of $\Delta A_{LR}(stat)$ on $P(e^+)$

- On basis of 10⁶ Z's
- P(e⁺) important
- Strictly speaking:

P(e⁺)=60% desirable

cf also Hawkings, Moenig, 1999 on basis of 109 Z-events, GigaZ studies

Dependence of ΔA_{LR}(stat) on L₊₊ and L₋₋

- What is the optimum time running in (++) and (--) mode?
- Assume P(e⁺)=40%
- Best value at about

$$(L_{++} - L_{--})/L_{int} = 25\%$$

- But does not significantly reduce the uncertainty!
- Higher P(e+) more effective

Schemes for e⁺ production

- Several possibilities to achieve the Z-pole:
 - Deceleration of e- beam after 150 GeV point
 - still to high for Z-pole: slight fine tuning with E_b needed
 - some emittance dilution but larger energy spread (probably ok)
 - Running of undulator at lower energy, E_b=50GeV
 - dependence on higher harmonics, K value tuning useful
 - lower lumi but ok for calibration (estimated 7x10³¹ ok)
 - Larger emittance (but ok for calibration)
 - Iff problems: bypass solution

How to reach the Z-pole?

- Other possibility:
 - use other e- source for undulator, but inject e- beam for calibration from DR after undulator?
 - probably too much effort, but should be studied
- What about undulator at 250 GeV option? ('minimal machine' approach)
 - Running at 50 GeV and same as before (higher harm, K-value)
 - Bypass solution, etc.

So no showstopper (also for high energy physics run)...

Conclusion

- Promising physics case for using low lumi Z-pole data
 - Large physics gain in ew prec. Physics, A_{LR} vs A_{FB}, worst case scenarios, etc (see forthcoming paper)
 - Powerful tests at an early stage and (GigaZ comes late, but could be further motivated by these low lumi data)
 - Polarized e- and e+, helicity flipping and polarimeters needed (see other talks of Jenny, Sabine and Ken)
- Different schemes possible for e+@Z-pole, optimization needed
- We should not miss this opportunity!