Precision ew measurements at calibration/Z-pole running Gudrid Moortgat-Pick (IPPP) 18/11/08 - RDR positron source - Calibration needs - Role of polarization - Physics - Conclusion and outlook Thanks a lot to the organizer for providing webex! #### RDR Positron Source - Positron source in RDR: - undulator-based source - •P(e+)~45% - •Changes needed to do calibration at the Z-pole? - How to optimize this option? - •Could we replace GigaZ via calibration runs? - Small positron polarization available for physics! ## Outcome of polarimetry+energy workshop - in more detail see executive summary, arXiv:0808.1638 (sent to GDE) - Since baseline design provides small polarization - •Flipping of helicity is required or destroy polarization completely (see talk of S. Riemann, source session) - This polarization could be enhanced to ~45% (with bunch compressor) - Spin rotation: - 'cheap' and quick kicker system before pre-DR, moved to 400 MeV (see talk of K. Moffet, source session) - Polarimetry requirements (see talks of J. List, e.g. top session) #### **Calibration Needs** - How many Z's are needed for calibration? - Experience from LEP2 - Calibration needed after annual shutdown - After each annual shutdown:10 pb/detector + couple of pb's over the year - No Z-pole calibration needed after push-pull - For calibration: - large emittance, low lumi tolerable (Scope Document 2) - L_{cal} ? Estimates in the range of $7x10^{31}$ -- $7x10^{32}$ - Has still to be worked out - Therefore requirements based on # of Z-events ### Physics: Z-pole data - Why do we need such data a.s.a.p.? - Discrepancy between A_{LR} and A_{FB} SLD: $$\sin^2 \theta_{\text{eff}} = 0.23098 \pm 0.00026 \quad (A_{LR}(\ell)),$$ LEP: $\sin^2 \theta_{\text{eff}} = 0.23221 \pm 0.00029 \quad (A_{FB}(had)).$ — most sensitive tests of the Standard Model via measurements of the ew observables as $\sin^2\theta_{eff}$ We do need it already now !!! ## A_{LR} and $\sin^2\theta_{eff}$ Accuracy in sin²Θ_{eff} $$A_{\rm LR} = \frac{2(1-4\sin^2\!\theta_W^{\rm eff})}{1+(1-4\sin^2\!\theta_W^{\rm eff})^2}$$ - → precision in ALR directly transferred to sin² ⊕ eff - GigaZ will provide Δ sin²Θ_{eff} ~1.3 x 10⁻⁵ (if Blondel scheme) - → only electron polarization at GigaZ: ~9.5 x 10⁻⁵ - current value: 16 x 10⁻⁵ - What could we gain with a 'fraction' of GigaZ ? ### Strategy - Collect calibration data from several years (maybe 5 y, proposal?) - Collect data from dedicated Z-pole runs with low lumi (25 days / year) - 'Full' GigaZ would take a few 10³ low lumi days (on basis of L_{cal}=7x10³¹) - Makes no sense to aim for that - In case one had higher L_{cal}, one could think about that! - GigaZ after ILC physic runs is late anyway....2025? (personal comment) - But already with such a fraction of the GigaZ accuracy we gain a lot in physics! ## Physics gain vs. required precision What are the important input quantities? – Mass of top: Heinemeyer, Hollik, Weber, Weiglein '08 | current theoretical: | | | |--|--|--| | intrinsic | $\Delta m_W^{\mathrm{intr,today}} \approx 4 \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\rm eff}^{\rm intr,today} \approx 4.7 \times 10^{-5}$ | | parametric | | | | $\delta m_t = 1.2 \text{ GeV}$ | $\Delta m_W^{\mathrm{para,m_t}} \approx 11 \; \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\rm eff}^{\rm para, m_t} \approx 3.6 \times 10^{-5}$ | | $\delta(\Delta\alpha_{\rm had}) = 35 \times 10^{-5}$ | $\Delta m_W^{\mathrm{para},\Delta\alpha_{\mathrm{had}}} \approx 6.3 \; \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\rm eff}^{\rm para, \Delta \alpha_{had}} \approx 12 \times 10^{-5}$ | | $\delta m_Z = 2.1 \text{ MeV}$ | $\Delta m_W^{\mathrm{para, m_Z}} \approx 2.5 \; \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\text{eff}}^{\text{para,mz}} \approx 1.4 \times 10^{-5}$ | | future parametric | | | |---|--|--| | $\delta m_t = 1 \text{ GeV}$ | $\Delta m_W^{\mathrm{para,m_t}} \approx 6 \; \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\rm eff}^{\rm para, mt} \approx 3 \times 10^{-5}$ | | $\delta m_t = 0.1 \text{ GeV}$ | $\Delta m_W^{\mathrm{para,m_t}} \approx 1 \; \mathrm{MeV}$ | $\Delta \sin^2 \theta_{\rm eff}^{\rm para, m_t} \approx 0.3 \times 10^{-5}$ | | $\delta(\Delta\alpha_{\rm had}) = 5 \times 10^{-5}$ | $\Delta m_W^{\mathrm{para},\Deltalpha_{\mathrm{had}}}pprox 1~\mathrm{MeV}$ | $\Delta \sin^2 \theta_{ m eff}^{ m para}, \Delta \alpha_{ m had} \approx 1.8 \times 10^{-5}$ | - only progress if Δ_{exp} ≤ Δ_{theo} #### What is achievable with low lumi Z-data? #### Strategy: - 10 pb⁻¹/ detector after annual shutdown + couple of pb⁻¹ / year - Collect Z-data for each calibration and dedicated low lumi runs on the Z-pole - About 0.6 fb⁻¹ needed (~ 100 days) to achieve sin²θ_{eff} ~3x 10⁻⁵ (in collaboration with J. List, K. Moenig, S. Riemann, R. Settles,...) - Why is 3 x 10⁻⁵ useful and best value for now? - only progress if Δ_{exp} ≤ Δ_{theo} - $-\Delta_{theo}$ dominated by Δm_{top} - currently about $\Delta m_{top} \sim 1.2$ GeV leading to $\Delta \sin^2 \theta_{eff} \sim 3.5 \times 10^{-5}$ - with exp. LHC $\Delta m_{top} \sim 1$ GeV one ends up $\Delta \sin^2 \theta_{eff} \sim 3 \times 10^{-5}$ - No further gain as long as not $\Delta m_{top} \sim 0.1$ GeV! (ILC precision) #### Possible low lumi Z-data: ΔA_{LR}(stat) | | $\int {\cal L}$ | No. of Z's | $\int_{ m days} \mathcal{L}_{ m cal}$ | $P(e^{-})$ | $P(e^+)$ | $\Delta A_{ m LR}$ | $\sin^2 \theta_{\mathrm{eff}}$ | | |---|---------------------------|---------------------|---------------------------------------|------------|----------|----------------------|--------------------------------|--| | | $6 \; { m pb}^{-1}$ | 1.8×10^{5} | 1 | 90% | 0 | 2.7×10^{-3} | 3.4×10^{-4} | | | | | | | 90% | 40% | 3.3×10^{-3} | 4.2×10^{-4} | | | | | | | 90% | 60% | 2.2×10^{-3} | 2.8×10^{-4} | | | 1 | 24 pb^{-1} | 7.3×10^{5} | 4 | 90% | 0 | 1.5×10^{-3} | 1.9×10^{-4} | | | | | | | 90% | 40% | 1.6×10^{-3} | 2.1×10^{-4} | | | | | | | 90% | 60% | 1.1×10^{-3} | 1.4×10^{-4} | | | | 60 pb^{-1} | 1.8×10^{6} | 10 | 90% | 0 | 1.1×10^{-3} | 1.4×10^{-4} | | | | | | | 90% | 40% | 1.0×10^{-3} | 1.3×10^{-4} | | | | | | | 90% | 60% | 7.0×10^{-4} | 8.9×10^{-5} | | | | $0.6 \; {\rm fb^{-1}}$ | 18×10^{6} | 100 | 90% | 0 | 8.1×10^{-4} | 1.0×10^{-4} | | | | | | | 90% | 40% | 3.3×10^{-4} | 4.2×10^{-5} | | | | | | | 90% | 60% | 2.2×10^{-4} | 2.8×10^{-5} | | | | $0.9 \; \mathrm{fb^{-1}}$ | 27×10^{6} | 150 | 90% | 0 | 7.9×10^{-4} | 1.0×10^{-4} | | | | | | | 90% | 40% | 2.7×10^{-4} | 3.4×10^{-5} | | | | | | | 90% | 60% | 1.8×10^{-4} | 2.3×10^{-5} | | | | $1.2 \; {\rm fb^{-1}}$ | 36×10^{6} | 200 | 90% | 0 | 7.9×10^{-4} | 1.0×10^{-4} | | | | | | | 90% | 40% | 2.3×10^{-4} | 3.0×10^{-5} | | | | | | | 90% | 60% | 1.6×10^{-4} | 2.0×10^{-5} | | # Physics gain with $\sin^2\theta_{eff} = 3 \times 10^{-5}$ - Hints for new physics in worst case scenarios: - Only Higgs @LHC - No hints for SUSY - Deviations at Z-pole - Hints for SUSY - Powerful test! - We should not miss this option Heinemeyer, Hollik, Weber, Weiglein '07 + Power report 0.2316 0.2315 $(\sin^2 \theta_{nn})^{exp} = today \pm \sigma^{10}$ ან ენ 0.2314 0.2313 squarks & gluinos: $M_{0,11,0}$ =6 $(M_{0,11,0})^{(PG)}$; $\Lambda_{1,0}$ =6 $(\Lambda_{1,0})^{(PG)}$; m_{ξ} =6 $(m_{\xi})^{(PG)}$ steptons, neutralinos & charginos. $\mathbf{M}_{i,j}$ =scale $(\mathbf{M}_{i,j})^{SPG}$, $\boldsymbol{\Lambda}_{i}$ =scale $(\boldsymbol{\Lambda}_{i,j})^{SPG}$, $\mathbf{M}_{i,j}$ =scale $(\mathbf{M}_{i,j})^{SPG}$ 0.2312 $m_{\widetilde{\gamma}^{i}_{\cdot}}[GeV]$ ### What's the role of polarization? Derive the statistical uncertainty of A_{LR} If only polarized electrons: Δ A_{LR} determined by polarimeter uncertainty $$A_{LR}$$ = 1 / P(e-) x [$\sigma_L - \sigma_R$] / [$\sigma_L + \sigma_R$] - Pure error propagation: uncertainty depends on $\Delta\sigma_L$, $\Delta\sigma_R$, $\Delta P/P$ - For large statistics, σ (ee -> Z -> had) ~ 40 nb: main uncertainty from ΔP/P~ 0.5 % up to 0. 25% - Since 'only' calibration and begin of ILC, we assume $\Delta P/P = 0.5 \%$ - Higher P(e⁻) better, we assumed 90% #### **Blondel Scheme** - Two polarized beams available - Express A_{LR} only by cross sections $$\sigma = \sigma_{\text{unpol}}[1 - P_{e^{-}}P_{e^{+}} + A_{\text{LR}}(P_{e^{+}} - P_{e^{-}})],$$ $$A_{\text{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{+-} - \sigma_{-+} - \sigma_{--})(-\sigma_{++} + \sigma_{+-} - \sigma_{-+} + \sigma_{--})}{(\sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--})(-\sigma_{++} + \sigma_{+-} + \sigma_{--})}}$$ - Pure error propagation: uncertainty depends on $\Delta\sigma_{LL}$, $\Delta\sigma_{LR}$, $\Delta\sigma_{RL}$, $\Delta\sigma_{RR}$ not on ΔP/P - Only relative measurements wrt flipping polarization needed $\Delta P / P = 0.5 \%$ should be sufficient - Some calibration time in LL and RR required assumed 10%, but that's not the optimum (see later) ## Dependence of $\Delta A_{LR}(stat)$ on $P(e^+)$ - On basis of 10⁶ Z's - P(e⁺) important - Strictly speaking: P(e⁺)=60% desirable cf also Hawkings, Moenig, 1999 on basis of 109 Z-events, GigaZ studies ## Dependence of ΔA_{LR}(stat) on L₊₊ and L₋₋ - What is the optimum time running in (++) and (--) mode? - Assume P(e⁺)=40% - Best value at about $$(L_{++} - L_{--})/L_{int} = 25\%$$ - But does not significantly reduce the uncertainty! - Higher P(e+) more effective ## Schemes for e⁺ production - Several possibilities to achieve the Z-pole: - Deceleration of e- beam after 150 GeV point - still to high for Z-pole: slight fine tuning with E_b needed - some emittance dilution but larger energy spread (probably ok) - Running of undulator at lower energy, E_b=50GeV - dependence on higher harmonics, K value tuning useful - lower lumi but ok for calibration (estimated 7x10³¹ ok) - Larger emittance (but ok for calibration) - Iff problems: bypass solution ### How to reach the Z-pole? - Other possibility: - use other e- source for undulator, but inject e- beam for calibration from DR after undulator? - probably too much effort, but should be studied - What about undulator at 250 GeV option? ('minimal machine' approach) - Running at 50 GeV and same as before (higher harm, K-value) - Bypass solution, etc. So no showstopper (also for high energy physics run)... #### **Conclusion** - Promising physics case for using low lumi Z-pole data - Large physics gain in ew prec. Physics, A_{LR} vs A_{FB}, worst case scenarios, etc (see forthcoming paper) - Powerful tests at an early stage and (GigaZ comes late, but could be further motivated by these low lumi data) - Polarized e- and e+, helicity flipping and polarimeters needed (see other talks of Jenny, Sabine and Ken) - Different schemes possible for e+@Z-pole, optimization needed - We should not miss this opportunity!