

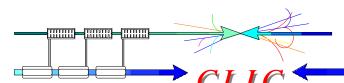
CLIC/ILC collaboration working group on damping rings

Mark Palmer (Cornell) and Yannis Papaphilippou (CERN)

CLIC/ILC DR parameters

Intense interaction between
ILC/CLIC in the community
working on the DR crucial

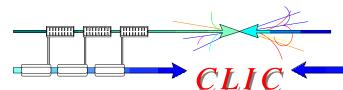
issues: ultra low emittance and


Common WEBEX
 collaboration meetings already
 organized for CESR-TA, ILC
 and CLIC DR (subscribe
 yourself to the mailing list)

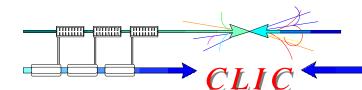
e⁻-cloud mitigation.

It is very important to strengthen the collaboration and include also other beam dynamics and technical aspects.

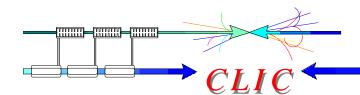
S. Guiducci, INFN-LNF during CLIC'08


	ILC	CLIC
Energy (GeV)	5	2.4
Circumference (m)	6476	365
Bunch number	2700 - 5400	312
N particles/bunch	2x10 ¹⁰	3.7x10 ⁹
Damping time τ _x (ms)	21	1.5
Emittance $\gamma \varepsilon_x$ (nm)	4200	381
Emittance $\gamma \varepsilon_x$ (nm)	20	4.1
Momentum compaction	(1.3 - 2.8)x10 ⁻⁴	0.80x10 ⁻⁴
Energy loss/turn (MeV)	8.7	3.9
Energy spread	1.3x10 ⁻³	1.4x10 ⁻³
Bunch length (mm)	9.0 - 6.0	1.53
RF Voltage (MV)	17 - 32	4.1
RF frequency (MHz)	650	2000

Draft mandate


- Develop synergies and collaborate in beam dynamics and technical issues of common interest in damping ring design
- Use common research approaches and studies when possible including numerical tools
- Take advantage of existing test facilities or storage rings and participate in a common experimental program
- Trigger communication, establish links between the two communities, share knowledge and document common work

Common subjects


- e⁻-cloud
 - □ Vacuum chamber design (coatings)
 - ☐ Impedance estimation
- Low emittance tuning (correction systems)
 - ☐ Lattice design
 - Diagnostics
- Collective effects (IBS, Fast ion instability) and feedback
- Magnet technology including wiggler and radiation absorption schemes

Methods and Codes

- Use common beam dynamics methods and share, compare and benchmark numerical tools
 - □ Good example is the simulation work done for e⁻-cloud by Cornell, LBNL, SLAC, INFN-LNF, ANL, CERN et al.
 - ☐ Other examples may include
 - Lattice design (tuning low emittance cells)
 - Correction systems (low emittance tuning) and dynamic aperture optimization (tracking codes, resonance analysis)
 - Collective effects (IBS, fast ion instability)
 - **.**...

Test facilities

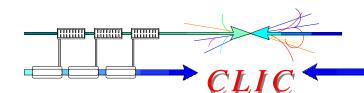
CESR-TA

e⁻-cloud, chamber tests, mitigation techniques

Low emittance tuning

ATF

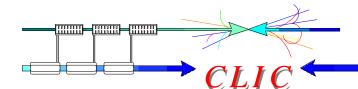
Diagnostics (X-BSM, BPMs,...)


Storage rings (SLS, ANKA, DIAMOND, SOLEIL...) Resonance analysis and correction systems

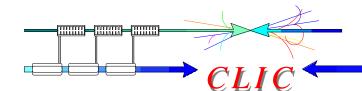
Equilibrium emittance in IBS and wiggler dominated regime

Collective effects (FII, feedback)

19/11/2008


ILC '08

Communication


- Promote communication and sharing of knowledge through common meetings (WebEx) in order to facilitate the understanding of the similarities and differences of the two designs
- Working group mailing list and Web-page
- Document common work in a working group report
- Organize a workshop

Working Plan

- Short term (mid 2009)
 - □ Numerical tools
 - Collaboration for e⁻-cloud simulation work
 - ☐ Participate in common experiments at test facilities
 - e-cloud, chamber tests @ CESR-TA
 - Low emittance tuning @ CESR-TA, ATF
 - Fast Ion Instability @ ATF
 - ☐ Communication
 - Organize regular common meetings (already existing)
 - Set-up a working group mailing list and web page

Working Plan

- Long term (2009-2010)
 - □ Numerical tools
 - Lattice design and non-linear dynamics
 - Impedance estimation
 - ☐ Participate in common experiments at test facilities
 - IBS experiments @ CESR-TA
 - Low emittance tuning @ SLS
 - Resonance analysis @ ATF, CESR-TA, Light Sources
 - □ Communication
 - Organize a workshop
 - Document common work in a working group report

ILC '08