Tracking Studies for ILD: ILCSoft

LCWS08 UIC

Steve Aplin and Alexei Raspereza DESY IT and MPI Munich 18th November 2008

Overview

- Digitisation
- Reconstruction
- Results on Detector Models

Overview

Structure of Tracking Package

Digitisation

Digitisation

- To keep things simple for now we have opted for simple smearing based on well defined distributions
- For the large MC sample this is preferable due to the differing technology options and to provide a well understood basis for developing the reconstruction algorithms
- It is always possible to choose conservative parameters
- CPU Performance considerations

Digitisation

- TPC: Parameterised Gaussian Smearing
 - $\sigma_{r\phi}^2 = \sigma_0^2 + D^2 \cdot L_{drift} / N_{eff}$
 - $\sigma_z^2 = (400 \mu m^2) + L_{drift} [cm] \cdot (80 \mu m^2) / cm$
- Silicon: Simple Gaussian Point Smearing

Trackers in ILD

- TPC: Large Time Projection Chamber
- VXD: 5 single layer or 3 doublet Vertex detector
- FTD: Pixel/Strip Silicon Disks in the low angle forward region
- SIT/SET: 2 Cylindrical layers of Silicon Strips inside & outside the TPC
- ETD: XUV Planar Silicon Strips on the far side of the TPC End-Plate

Trackers in ILD

Trackers in ILD

```
• TPC: \sigma_{\text{rphi}} < 100 \ \mu\text{m}
```

• VXD:
$$\sigma_0 < 2.8 \ \mu m$$

• SIT/SET:
$$\sigma_{rphi}$$
 = 7 μ m σ_z = 100 μ m

• ETD:
$$\sigma_{rphi} = 7 \mu m$$

• FTD:
$$\sigma_{rphi} = 7 \mu m$$

Track Reconstruction

- Initially adopted Tracking Code used at LEP
- TPC pattern recognition taken from ALEPH (F77)
- Track Fitting taken from DELPHI (C)
- C++ pattern recognition in Silicon Trackers
- C++ code for Si TPC Track association
- Fortran Code wrapped in C++ to create Marlin Processors

Track Reconstruction: TPC Patrec

- Hits sorted by radius and phi
- Chains created Out to In
- Initial search stops half R
- Circle Fit used to fit chains
- Chains then moved in picking up hits towards closer to the IP

Track Reconstruction: TPC Patrec

- Hits sorted by radius and phi
- Chains created Out to In
- Initial search stops half R
- Circle Fit used to fit chains
- Chains then moved in picking up hits towards closer to the IP

Track Reconstruction: Si Patrec

- Initial search for hit triplets in VXD+SIT or FTD starting from Out to In
- Special treatment of VXD-FTD transition region in θ.
 Combined triplet search 2+1 or 1+2 patterns
- Inward extrapolation of helices defined by triplets, picking up additional hit closer to the IP

Track Reconstruction: Fitting

- FullLDCTracking Processor serves as a both the track association algorithm, as well as a front end for the DELPHI Fitting code
- Recovers a large number of split TPC loopers
- Kalman filter, Outlier rejection
- Reconstruction of V⁰'s implemented in separate processor
 V0FinderProcessor

Problem with B Field in GEANT4

- Tracking over small volumes in a B Field one must be careful to correctly set the GEANT4 Parameter:
 - fieldMgr->SetDeltaIntersection(1e-5 * mm);

20 GeV mu+ 85 degrees

Tracking Performance: Pulls Ω

Tracking Performance: Pulls Ω

LDCPrime 02Sc

ttbar @ 500GeV:

LDCPrime_02Sc

20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30

Model Comparisons

single muons

Model Comparisons

single muons

Summary

- As expected there is no great difference between the different detector models
- Track Reconstruction is ready for LOI MCData production
- Still need to check it thoroughly against ILD_00
- Incorporate Background into studies
- Try to work on lower momentum spectrum