

Yannis PAPAPHILIPPOU CERN

November 18th, 2008

CLIC damping rings (DR) design goals and challenges

Outline

CLIC

parameter

note 2008

M. Korostelev,

PhD thesis, 2006

Wiggler design and power absorption

Design parameters' evolution

- Non-linear dynamics
- Low emittance tuning
- e-cloud and other collective effects (IBS)
- Diagnostics

CLIC

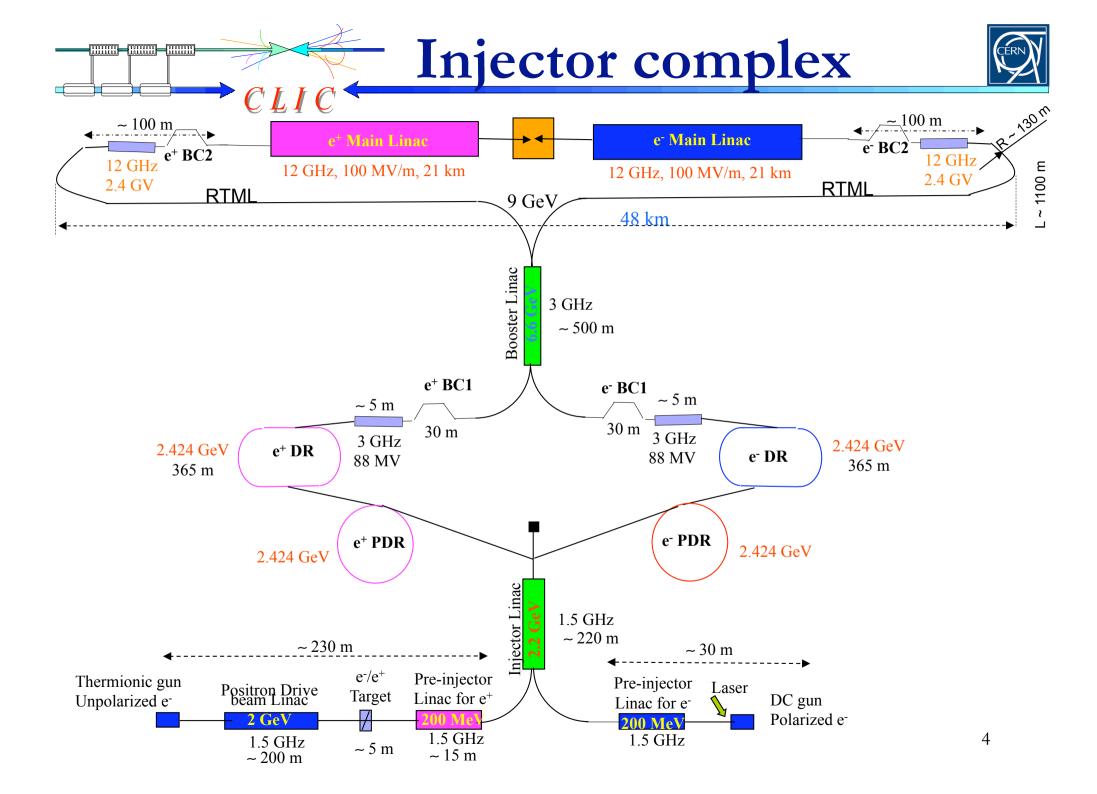
parameter

note 2005

- CLIC DR activities
- Summary

Design

optimisation for


CDR (2010)

Damping ring design goals

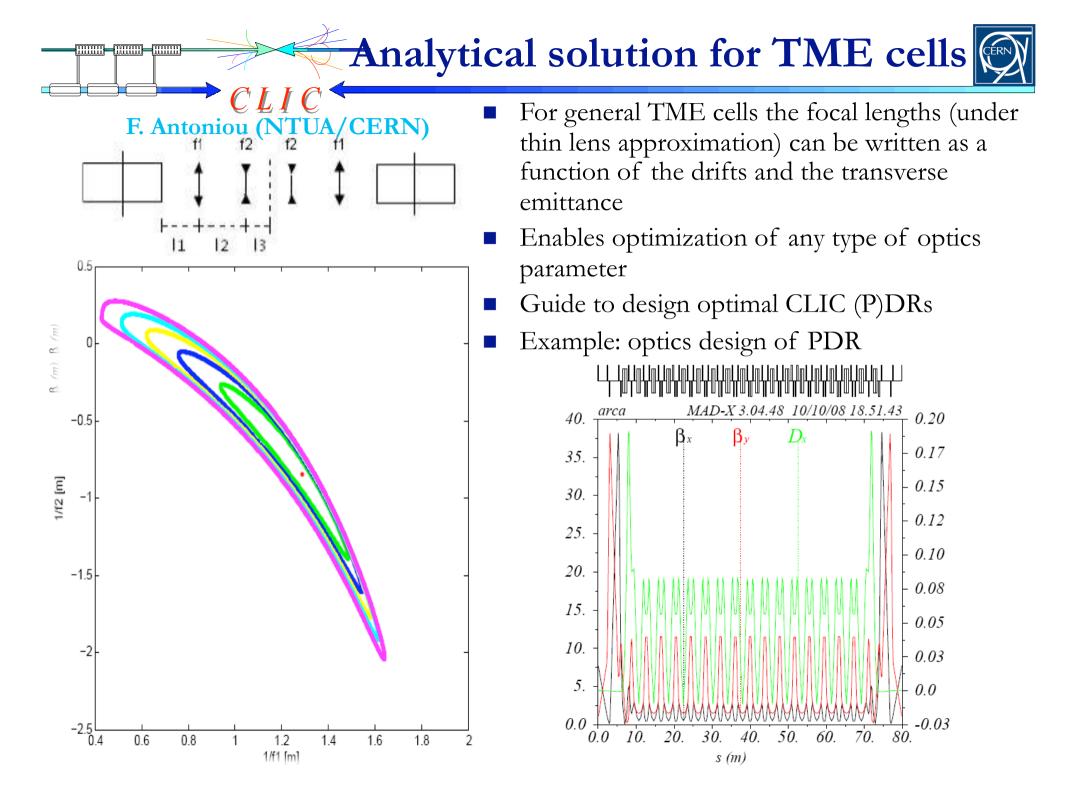
	Horizontal Emittance (μrad-m)	PARAMETER	NLC	CLIC
0		bunch population (10 ⁹)	7.5	4.1
10.000 -		bunch spacing [ns]	1.4	0.5
•	◆ <mark>SLC</mark>	number of bunches/train	192	312
부 1.000 - 명명	USLS II Scaled ILC	number of trains	3	1
п)		Repetition rate [Hz]	120	50
ř		Extracted hor. normalized emittance [nm]	2370	<550
Ы		Extracted ver. normalized emittance [nm]	<30	<5
Vertical 010.0	CLIC 500 GeV 3 TeV ATF SLS	Extracted long. normalized emittance [keV.m]	10.9	<5
-	CLIC DR ATF	Injected hor. normalized emittance [µm]	150	63
0.001 -	design	Injected ver. normalized emittance [µm]	150	1.5
		Injected long. normalized emittance [keV.m]	13.18	1240

- Starting parameter dictated by design criteria of the collider (luminosity), injected beam characteristics or downstream system tolerances
- Intra-beam scattering due to high bunch current blows-up the beam
 - Equilibrium "IBS dominated" emittance has to be reached fast to match collider high repetition rate
- Other collective effects (e.g. e⁻-cloud, fast ion instability) may increase beam losses

CLIC Pre-damping rings

Most critical the e⁺ PDR

- Injected e⁺ emittance ~ 2 orders of magnitude larger than for e⁻, i.e. aperture limited if injected directly into DR
- PDR for e⁻ beam necessary as well
 - A "zero current" linac e⁻ beam (no IBS) would need ~ 17ms to reach equilibrium in DR, (very close to repetition time of 20ms)


PDR main challenges

- Large input momentum spread necessitates large longitudinal acceptance for good injection efficiency
- Polarised positron stacking time long compared to repetition rate (need fast damping and/or staggered trains)

PDR Extracted Parameters	CLIC	NLC
Energy [GeV]	2.424	1.98
Bunch population [10 ⁹]	4.1-4.4	7.5
Bunch length [mm]	10	5.1
Energy Spread [%]	0.5	0.09
Hor. Norm. emittance [nm]	63000	46000
Ver. Norm. emittance [nm]	1500	4600

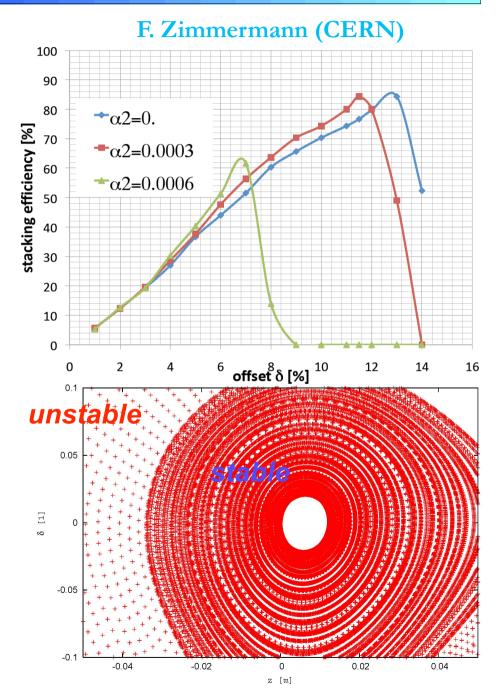
Injected Parameters	e	e ⁺
Bunch population [109]	4.4	6.4
Bunch length [mm]	1	5
Energy Spread [%]	0.1	2.7
Hor., Ver Norm. emittance [nm]	$100 \ge 10^3$	9.3 x 10 ⁶

CLIC Workshop '08

Stacking of polarized e⁺ into

CLIC Compton source using ERL or CR

the PDR

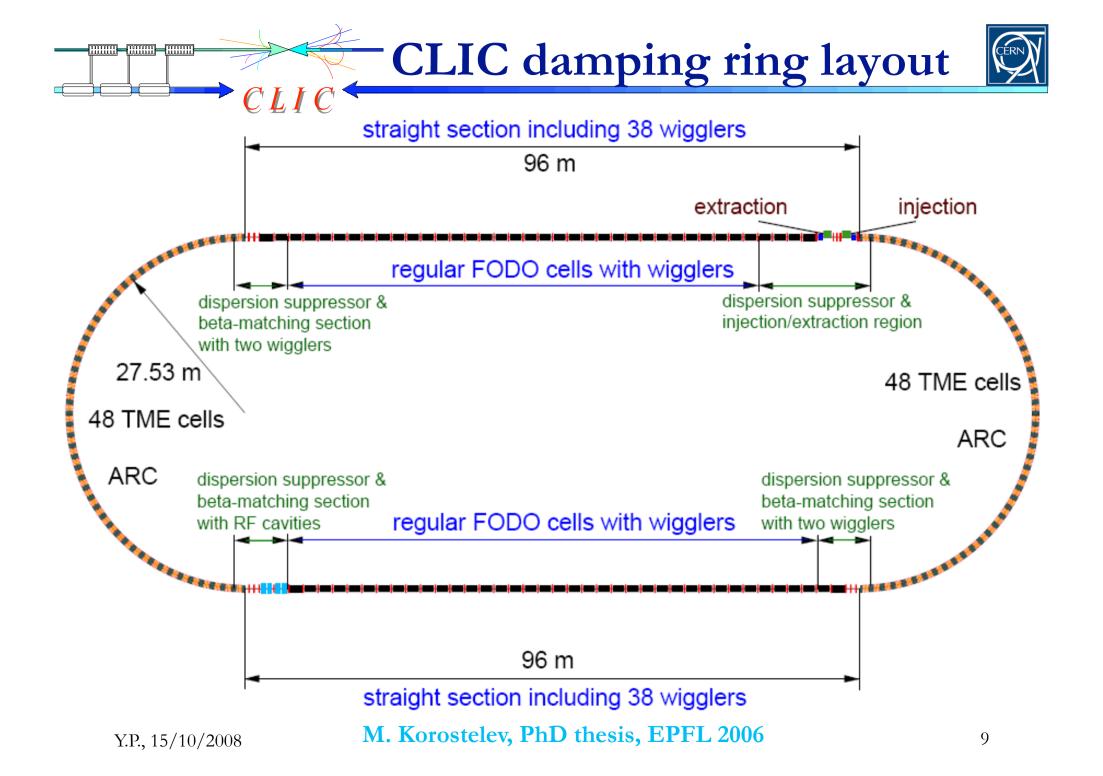

e+ emittance preservation after capture

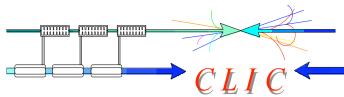
➤ CLIC PDR parameters should have a low a₂ (4e-4) and high V_{RF} (~16MV)

▶95% efficiency can be achieved with off-momentum off-phase injection

Needs 10% of momentum acceptance in PDR (off momentum DA)

Quite some flexibility (# optical cavities vs. e- bunch charge) but a few challenges for PDR design



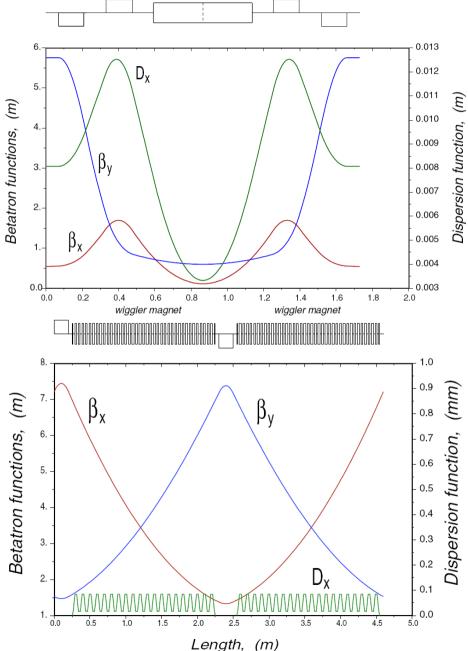

CLIC damping rings lattice

• Two rings of racetrack shape at energy of 2.424GeV • Arcs filled with **1.8m long** TME cells and straight sections contain FODO cells with damping wigglers, giving total length of 365.2m • Phase advance per TME cell was kept to 210° in the horizontal and **90°** in the vertical plane, providing a detuning factor of 1.8 • The chromaticity is controlled by two sextupole families.

Parameter [unit]	symbol	old value	new value
	-	(2005)	(2007)
beam energy [GeV]	E_b	2.424	2.424
circumference [m]	C	360	365.2
bunch population [10 ⁹]	N	2.56	3.70×1.1
bunch spacing [ns]	$T_{\rm sep}$	0.533	0.5
bunches per train	$N_{\rm b}$	110	312
number of trains	N_{train}	4	1
store time / train [ms]	t_{store}	13.3	20
rms bunch length [mm]	σ_z	1.547	1.53
rms momentum spread [%]	σ_{δ}	0.126	0.143
final hor. emittance [nm]	$\gamma \epsilon_x$	550	381
hor. emittance w/o IBS [nm]	$\gamma \epsilon_{x0}$	134	84
final vert. emittance [nm]	$\gamma \epsilon_y$	3.3	4.1
coupling [%]	κ	0.6	0.13
vertical dispersion invariant	\mathcal{H}_y	0	0.248
no. of arc bends	$n_{ m bend}$	96	100
arc-dipole field [T]	$B_{ m bend}$	0.932	0.932
length of arc dipole [m]	$l_{ m bend}$	0.545	0.545
arc beam pipe radius [cm]	$b_{ m arc}$	2	2
number of wigglers	$n_{ m w}$	76	76
wiggler field [T]	$B_{\mathbf{w}}$	1.7	2.5
length of wiggler [m]	$l_{\mathbf{w}}$	2.0	2.0
wiggler period [cm]	λ_w	10	5
wiggler half gap [cm]	b_w	0.6	0.5
mom. compaction $[10^{-4}]$	α_c	0.796	0.804
synchrotron tune	Q_s	0.005	0.004
horizontal betatron tune	Q_x	69.82	69.84
vertical betatron tune	Q_y	34.86	33.80
RF frequency [GHz]	$f_{ m RF}$	1.875	2
energy loss / turn [MeV]	U_0	2.074	3.857
RF voltage [MV]	$V_{\rm RF}$	2.39	4.115
h/v/l damping time [ms]	$ au_x/ au_y,/ au_s$	2.8/2.8/1.4	1.5/1.5/0.76
revolution time [μ s]	$T_{\rm rev}$	1.2	1.2
repetition rate [Hz]	$f_{ m rep}$	150	50

Arc and wiggler cell

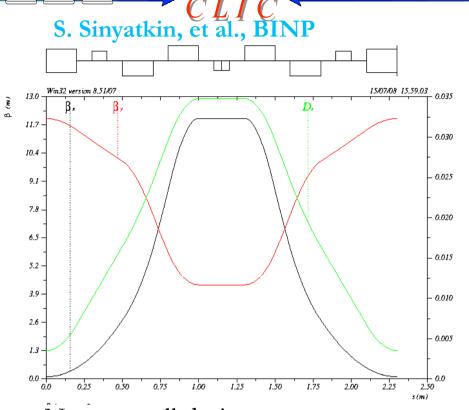
В


FQ

DQ

- TME arc cell chosen for compactness and efficient emittance minimisation over Multiple Bend Structures used in light sources
 - □ Large phase advance necessary to achieve optimum equilibrium emittance
 - Very low dispersion
 - Strong sextupoles needed to correct chromaticity
 - Impact in dynamic aperture
 - Very limited space
 - Extremely high quadrupole and
- sextupole strengths (E) DDO wiggler cell with phase vances close to 90° giving Average β 's of ~ 4m and reasonable chromaticity Quad strength adjusted to cancel wiggler FODO wiggler cell with phase advances close to 90° giving

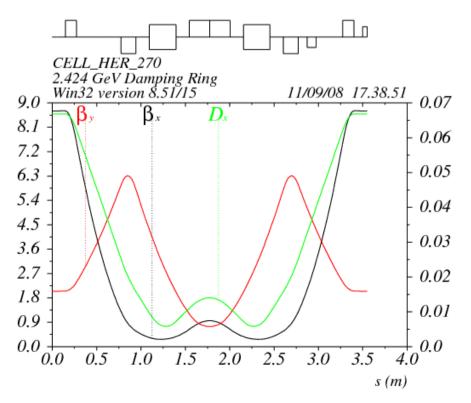
 - induced tune-shift
 - Limited space for absorbers

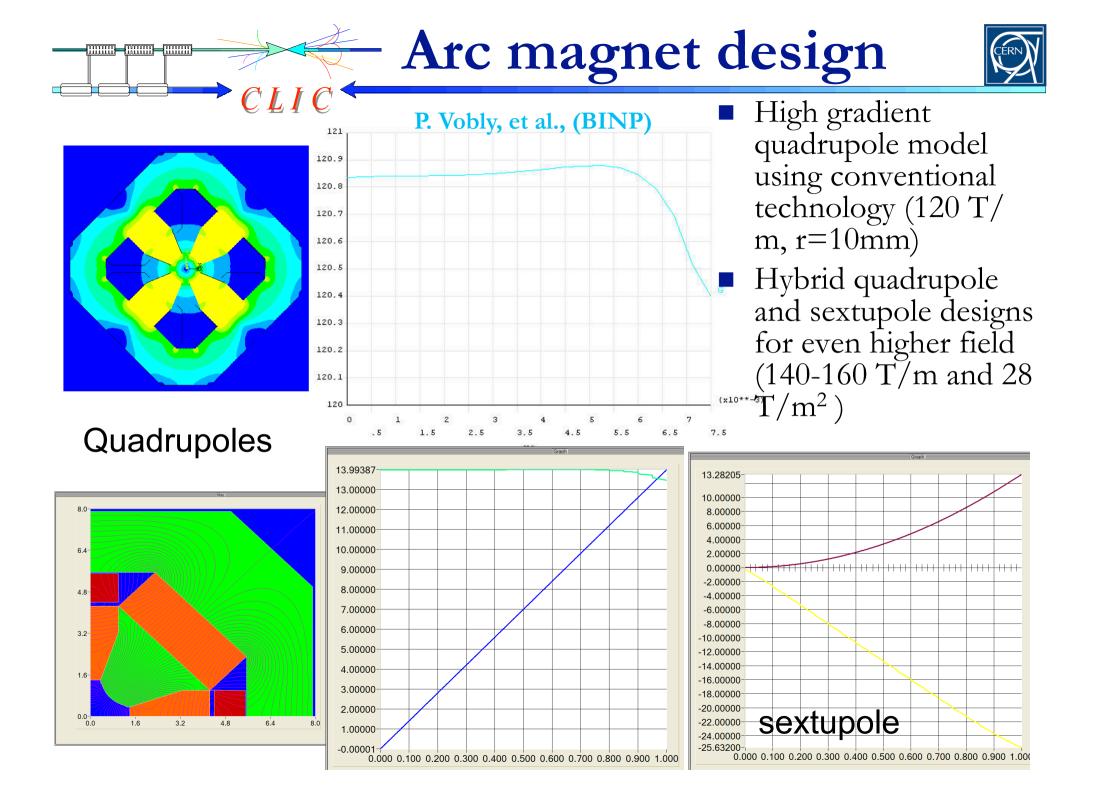

FQ

DQ

New arc cells optics

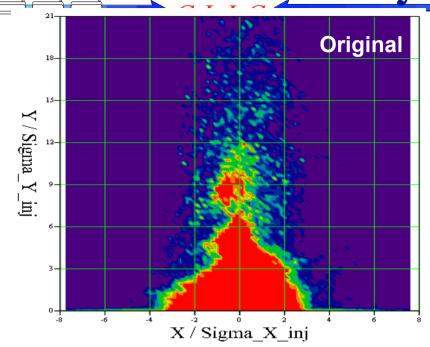
D (m)

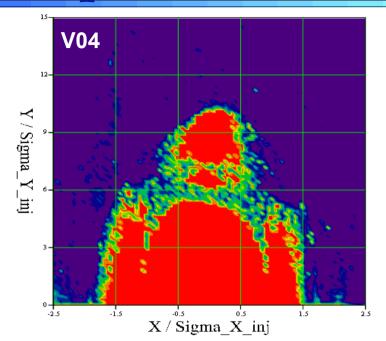


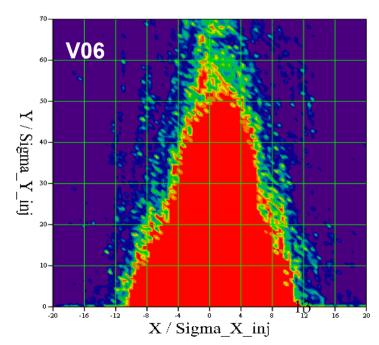

New arc cell design

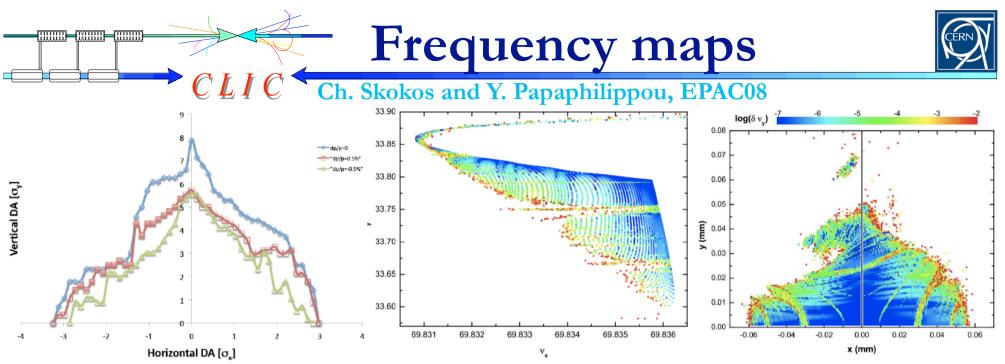
- Increasing space between magnets, reducing magnet strengths to realistic levels
- □ Reducing chromaticity, increasing DA
- Even if equilibrium emittance is increased (0 current), IBS dominated emittance stays constant!
- Dipoles have quadrupole gradient (as in ATF!).

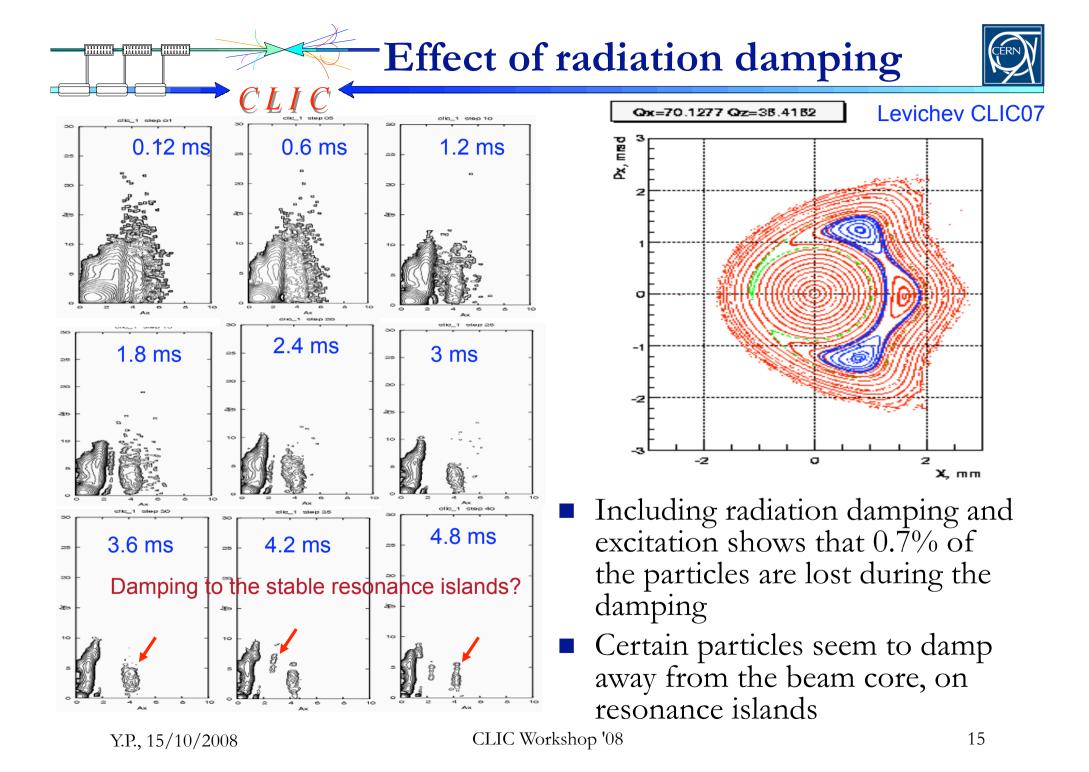
P. Raimondi (INFN-LNF)


- Alternative cell based on SUPERB lattice
 - □ Using 2 dipoles per cell with a focusing quadrupole in the middle
 - Good optics properties
 - To be evaluated for performance when IBS is included



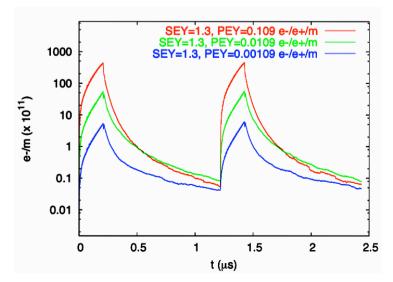

Dynamic aperture



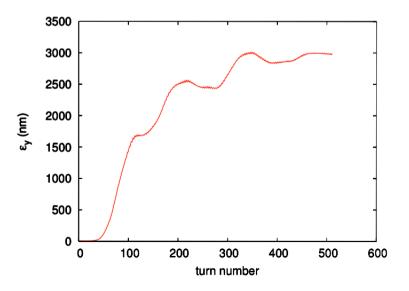


- Original and V04 lattices have very small DA
- The V06 lattice has a more comfortable DA
- Error tables for all magnets including superconducting wigglers to be considered and optimised
- Resonance correction and DA optimisation with sextupoles and/or octupoles using modern techniques (normal forms, frequency, maps, ...)
 S. Sinyatkin, et al. 2008

- Only sextupole non-linearity considered (two families)
- Small DA confirmed by both tracking with symplectic integrator SABA₂C and MADX-PTC
- First on-momentum frequency map reveals wide vertical tune spread and crossing of a multitude of resonances (especially 4th order for present working point)
- On-going effort to include in tracking all relevant effects (dipole and quadrupole fringe fields, wigglers, magnet errors, space-charge, radiation damping)


Collective effects

- The electron cloud in the e⁺ DR impose limits in PEY (99.9% of synchrotron radiation absorbed in the wigglers) and SEY (below 1.3) and can be cured with special chamber coatings
- Fast ion instability in :


......

- □ In e⁻ DR, molecules with A>13 will be trapped (constrains vacuum pressure to around 0.1nTorr)
- Other collective effects in DR
 - □ Space charge (large vertical tune spread of 0.188 and 10% emittance growth)
 - □ Single bunch instabilities avoided with smooth impedance design and resistive wall coupled bunch can be controlled with feedback

G. Rumolo et al. (CERN)

Chambers	PEY	SEY	ρ [10 ¹² e ⁻ /m ³]
	0.000576	1.3	0.04
D' 1		1.8	2
Dipole	0.0576	1.3	7
	0.0576	1.8	40
	0.00109	1.3	0.6
X <i>V7</i> * 1	0.109	1.3	45
Wiggler		1.5	70
		1.8	80

Surface Treatment for e- Cloud

Mitigation

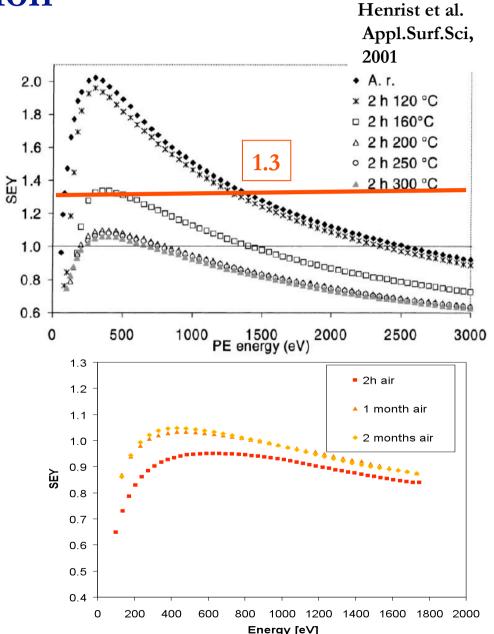
M. Taborelli et al. (CERN)

Bakeable system

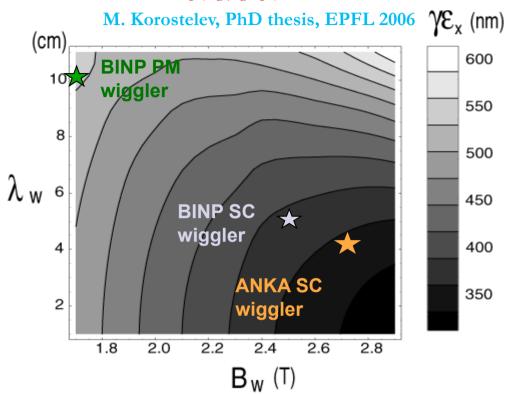
-NEG gives SEY<1.3 for baking @ > 180C -the evolution after many venting cycles should be studied

-NEG provides pumping

-it is also conceivable to develop a coating with lower activation T


Non-bakeable system

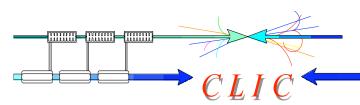
- a-C coating provides SEY< 1 (2h air exposure), SEY<1.3 (1week air exposure)
-after 2 months exposure in the SPS vacuum or 15 days air exposure no increase of e-cloud activity


-pumpdown curves can be as good as for stainless steel (measurements in progress in lab and ESRF)

-no particles and peel-off

-to be characterized for impedance and PEY

Wigglers' effect with IBS



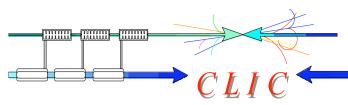
- With super-conducting wigglers of 2.5T and 5cm period, the achieved normalized horizontal emittance drops below 400nm
 - Super-conducting magnets have to be designed, built and tested

Stronger wiggler fields and shorter wavelengths necessary to reach target emittance due to strong IBS effect

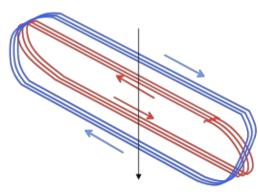
Parameters	BINP	ANKA/CERN
B _{peak} [T]	2.5	2.8
λ_{W} [mm]	50	40
Beam aperture full gap [mm]	20*	24*
Conductor type	NbTi	NbSn ₃
Operating temperature [K]	4.2	4.2

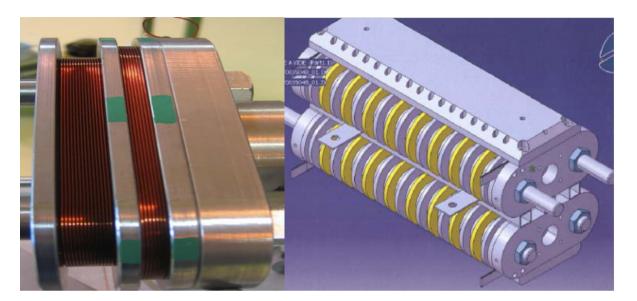
- Two wiggler prototypes
 - □ 2.5T, 5cm period, NbTi coil, built by BINP
 - □ 2.8T, 4cm period, Nb₃Sncoil, built by CERN/ANKA
 - Aperture fixed by radiation absorption scheme
- Short version to be installed and tested at ANKA


NbTi Wiggler Design

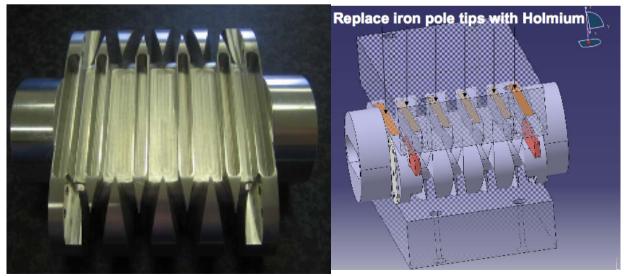

- Present design uses NbTi wet wire in separate poles clamped together (2.5T, 5cm period)
- Performance tests by the end of the year on short prototype
- Magnetic tolerances needed to refine design (e.g. taken from PETRA III wiggler)
- Alternative design allows using Nb3Sn dry wire substantially reducing time and cost

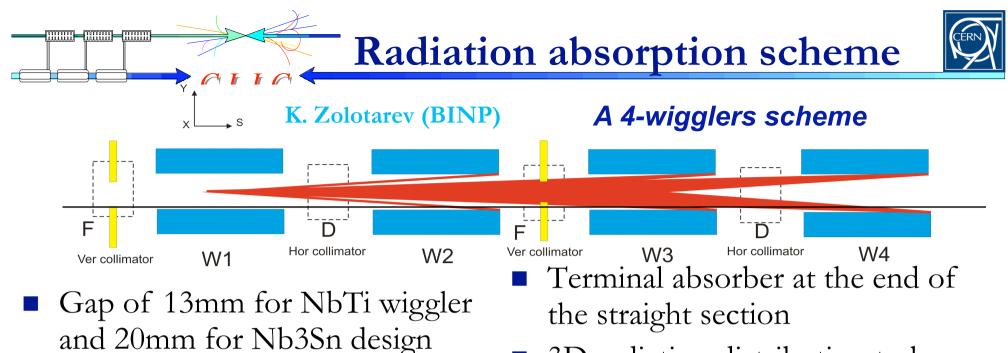
P. Vobly (BINP)


General view for BINP wiggler prototype



Nb3Sn Wiggler Design




- Two models (2.8T, 40mm period)
 - □ Vertical racetrack (WR)
 - Double helix (WH), can reach 3.2T with Holmium pole tips
- Apart from higher field Nb3Sn can sustain higher heat load (10W/m) than NbTi (1W/m)
- Between 2009-2010, two short prototypes will be built, tested at CERN and magnetically measured at ANKA

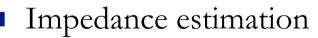
R. Maccaferri (CERN)

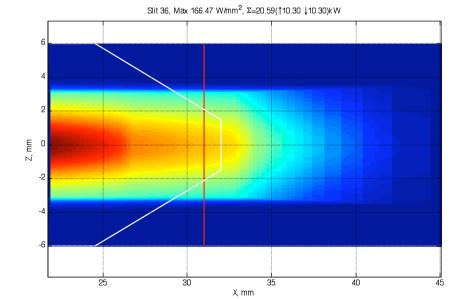
- gap 10 mm

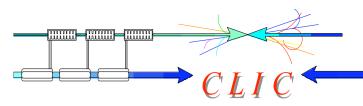
— gap 11 mm — gap 12 mm — gap 13 mm

(1W/m) or 13mm (10W/m)

Vertial colimaor gap size, mm

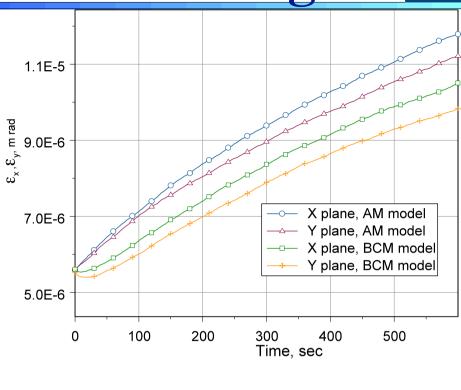

3

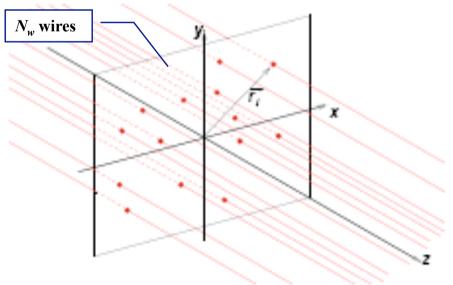

W4 chamber, W


ē

-oad 1

3D radiation distribution to be used for e-cloud built up

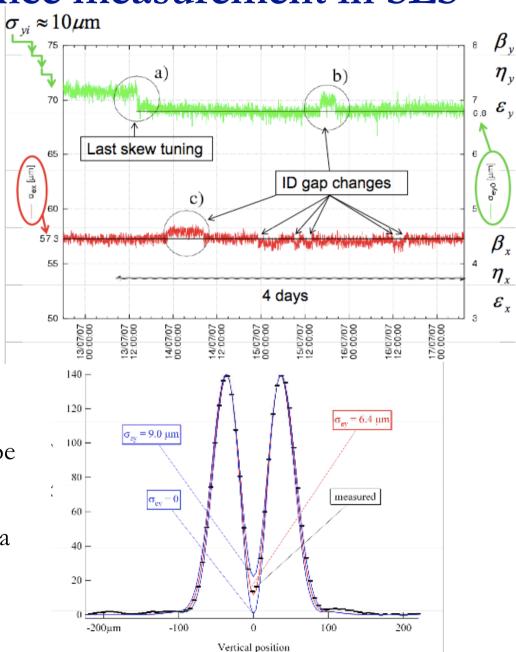



Intrabeam scattering

M. Martini and A. Vivoli (CERN)

- IBS effect evaluated through semi-analytical approach (modified Piwinski or Bjorken-Mtingwa formalism)
 - Derive analytically the optics parameters for reaching minimum IBS dominated emittance in selected lattices (FODO, TME,...)
- Numerical or analytical approach for effect of strong IBS producing non-Gaussian tails including radiation damping is missing
 - Codes for non-Gaussian beams exist (e.g. MOCAC) but not all effects included
 - Use of stochastic diffusion equation approach may be an alternative (presently used for coasting beams)

Coupling correction and low

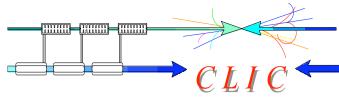


emittance measurement in SLS

A. Andersson (PSI)

.....

- Achieved 3pm vertical emittance
- Aggressive program for reaching absolute limit (0.55pm)
 - Correction of residual dispersion (3mm) induced by sextupole misalignments with skew quads in dispersive regions
- Beam size measurements using *π* polarization method
 - Beam image formed by vertically polarized visible-UV synchrotron radiation
 - Beam sizes of a few microns can be measured
 - Integration time of a 100-turns limited by response of CCD camera



 $\xrightarrow{}_{CLIC}$ Injection, extraction, timing, RF

- Interleaved bunch train scheme abandoned due to its complexity.
- Reduction of the repetition rate from 150 to 50Hz leaves enough time for the emittances to reach their equilibrium.
- Bunch spacing increased almost to the same level as for the interleaved scheme.
- 312 bunches with 0.5ns spacing, fill only 13% of the rings.
- RF frequency of 2GHz with voltage of 4.1MV for enough energy recovery while keeping longitudinal emittance below 5000eV.m
- Extraction kicker rise time is relaxed
- Detailed design of RF cavity and injection/extraction elements is **pending**

Y.P., 15/10/2008

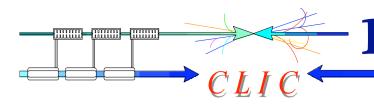
CLIC Workshop '08

CLIC DR RF system

1) Main issues:

A. Grudiev (CERN)

- Frequency: 2 GHz
- Highest peak and average power
- Very strong beam loading transient effects (beam power of ~ 5 MW during 156 ns, no beam power during the other 1060 ns)
- Small stored energy at 2 GHz
- High energy loss per turn at relatively low voltage results in big sin $\phi_s = 0.95$ (see also LEP)
- Wake-fields
- Pulsed heating related problem (fatigue, ...)
- 2) Recommendations:
 - Reduce energy loss per turn and/or increase RF voltage
 - Consider 1GHz frequency (RF system becomes conventional, RF power reduced, but delay loop for recombination is necessary and emittance budget is tight)

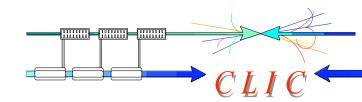

Damping Rings diagnostics

- Beam position from around **300PUs**, turn by turn (every **1.22µs**) all around the ring with a
 - \square 10µm resolution, for linear and non-linear optics measurements.
 - □ 2µm resolution for orbit measurements (needed for vertical dispersion/ coupling monitoring and correction and closed orbit feedback).
- A few wide band pick-ups able to do bunch-by-bunch (bunch spacing of 0.5ns for 312 bunches) and turn by turn position monitoring with a high resolution (1μm) for injector trajectory control, and bunch by bunch transverse feed-back.
- Some pick-ups or profile monitors for the extraction transfer line for extraction orbit control and feed-forward.
- Tune monitors and fast tune feed-back precision of 10⁻⁴). The vertical tune may move roughly by 0.2 due to space-charge. The precision of these monitors may be critical for resolving instabilities (i.e. synchrotron side-bands, ions)

- Turn by turn transverse profile monitors (X-ray?) with a wide dynamic range:
 - the horizontal geometrical emittance goes roughly from 13nm.rad at injection to 80pm.rad at extraction and the vertical from 300pm.rad to 0.8pm.rad.
 - □ Capable of measuring **tails** for an IBS dominated beam.
 - □ This would probably be the most challenging item.
- Longitudinal profile monitors
 - □ Energy spread of **0.5%** to **0.1%** and bunch length from **10** to **0.1mm**.
 - \Box Note that the dispersion around the ring is extremely small (<12mm).
- Fast beam loss monitoring and bunch-by-bunch current measurements
- E-cloud + ion diagnostics (vacuum)

Y. Papaphilippou and H.H. Braun

Activity	Contacts	Commitment	Comment
DR parameters	Y. Papaphilippou (CERN)	Formal	
Lattice design	Y. Papaphilippou (CERN), S.V. Sinyatkin (BINP)	Formal	
Non linear damania	Ch. Skokos (MPI-Dresden)	Informal	
Non-linear dynamics	E. Levichev et al. (BINP)	Formal	
Correction systems	R. Tomas, G. Vanbavickhove (CERN)	Planned	PhD thesis
	M. Martini, A. Vivoli (CERN)	Formal	
Intrabeam Scattering	F. Antoniou (CERN, NTUA)	Planned	PhD Thesis
Polarization	F. Zimmermann (CERN)	Informal	
	A. Muller (ANKA)	Planned	ANKA
Machine experiments	A. Streun (PSI), L. Rivkin (PSI – EPFL)	Informal	PSI
	F. Zimmermann (CERN)	Formal	ATF contact
Magnet design	E. Levichev, P. Vobly (BINP)	Formal	

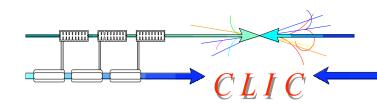

— Damping ring activities

Activity	Contacts	Commitment	Comment
Super-conducting	R. Rossmanith (ANKA), R. Maccaferi (CERN)	Planned	Nb3Sn
wiggler	E. Levichev, P. Vobly (BINP)	Formal	NbTi
Radiation absorption	K. Zolotarev (BINP)	Formal	
Pre-damping rings	F. Antoniou (CERN, NTUA)	Formal	
Tanta	J. Byrd, S. de Santis (LBNL)	Planned	
Instrumentation	T. Lefevre (CERN)	Formal	
	E. Jensen, A. Grudiev (CERN)	Planned	
RF design	V. Serriere (ESRF)	Informal	
Harmonic cavities	S. De Santis (LBNL)	Informal	
Injection/Extraction	T. Fowler, M. Barnes (CERN)	Formal	
Alignment	J.P. Quesnel (CERN)	Planned	
Stabilization	C. Hauviller (CERN)	Planned	
Feed-back	To be confirmed		

Ċ

f

Damping ring activities

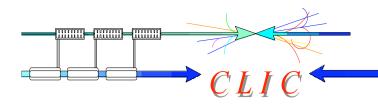

Collective effects: G. Rumolo

Activity	Contacts	Commitment	Comment
	G. Rumolo (CERN), W. Bruns	Formal	
e-cloud / ions	M. Pivi (SLAC)	Planned	
Chamber coating	P. Chiggiato (CERN), R. Kersevan (ESRF)	Planned	Cut by EUCARD
Space-charge	D. Quatraro (CERN), E. Levichev (BINP)	Formal	
Impedances	A. Wolski, M. Korostelev (Cockcroft Institute)	Planned	
Instabilities	G. Rumolo , D. Quatraro (CERN)	Formal	
Vacuum design	To be confirmed		

36 contact persons from CERN(19), BINP(4), Cockroft(2), ESRF(2), SLAC(1), LBNL (2), ANKA(2), PSI(2), MPI(1), Private(1)

Y.P., 15/10/2008

CLIC Workshop '08


CLIC/ILC DR common

issues S. Guiducci (INFN-LNF)

- Intense interaction between ILC/ CLIC in the community working on the DR crucial issues: ultra low emittance and e-cloud mitigation.
- Common WEBX collaboration meetings already organized for CESRTA, ILC and CLIC DR (inscribe yourself in the mailing list)
- It is very important to strengthen the collaboration and include also other beam dynamics and technical aspects.

	ILC	CLIC
Energy (GeV)	5	2.4
Circumference (m)	6476	365
Bunch number	2700 - 5400	312
N particles/bunch	2x10 ⁻¹⁰	3.7x10 ⁻⁹
Damping time τ_x (ms)	21	1.5
Emittance $\gamma \epsilon_x$ (nm)	4200	381
Emittance $\gamma \epsilon_x$ (nm)	20	4.1
Momentum compaction	(1.3 - 2.8)x10 ⁻⁴	0.80-4
	8.7	3.9
Energy loss/turn (MeV)		
Energy spread	1.3x10 ⁻³	1.4x10 ⁻³
Bunch length (mm)	9.0 - 6.0	1.53
RF Voltage (MV)	17 - 32	4.1
RF frequency (MHz)	650	2000

Summary

- Detailed design of the CLIC damping rings, delivering target emittance with the help of super-conducting wigglers
 - □ Prototype to be built and tested at ANKA synchrotron
 - □ Radiation absorption protection
 - Collective effects evaluation including electron cloud and fast ion instability
- Lattice revision with respect to space and magnet parameters
- Parameter scan for conservative beam emittances for 500GeV collider
- Active collaboration with ILC, test facilities, B-factories, synchrotron light sources and other interested institutes
- Critical items for the performance of the damping rings
 - □ Super-conducting wigglers
 - \square E-cloud and fast ion instability
 - Low emittance tuning
 - Intra-beam scattering