Simulation study of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}_{\mathrm{H}}{ }^{+} \mathrm{W}_{\mathrm{H}}{ }^{-}$

- I ntroduction
- Observable to be measured
- Analysis framework
- Event selection
- Results

Rei Sasaki (Tohoku University)

\quad with	
<Theorist>	<Experimentalist>
S.Matsumoto (Toyama Univ.)	K.Fuji (KEK)
M.Asano (ICRR)	Y.Takubo (Tohoku Univ.)
	T.Kusano (Tohoku Univ.)

Introduction

Littlest Higgs model with T-parity

<Particle contents>

Gauge-Higgs sector Matter sector
<WMAP constraint>

<Mass>

	Point I	Point II	Point III
f	$580(\mathrm{GeV})$	$660(\mathrm{GeV})$	$740(\mathrm{GeV})$
m_{h}	$134(\mathrm{GeV})$	$137(\mathrm{GeV})$	$152(\mathrm{GeV})$
$\Omega_{\mathrm{DM}^{2}} h^{2}$	0.106	0.104	0.106
$m_{A_{H}}$	$81.9(\mathrm{GeV})$	$95.9(\mathrm{GeV})$	$110(\mathrm{GeV})$
$m_{W_{H}}$	$368(\mathrm{GeV})$	$421(\mathrm{GeV})$	$474(\mathrm{GeV})$
$m_{Z_{H}}$	$369(\mathrm{GeV})$	$422(\mathrm{MeV})$	$474(\mathrm{MeV})$
m_{Φ}	$440(\mathrm{GeV})$	$513(\mathrm{GeV})$	$640(\mathrm{GeV})$
$m_{e_{H}}\left(\kappa_{l_{1}}=0.5\right)$	$410(\mathrm{GeV})$	$467(\mathrm{GeV})$	$523(\mathrm{GeV})$
$m_{e_{H}}\left(\kappa_{l_{1}}=1.0\right)$	$820(\mathrm{GeV})$	$933(\mathrm{GeV})$	$1050(\mathrm{GeV})$

A_{H} and $\mathrm{W}_{\mathrm{H}^{ \pm}}$can be searched by ILC (1 TeV).

Introduction

<Property>

	mass	spin
W_{H}	$368.2(\mathrm{GeV})$	1
$\mathrm{~A}_{\mathrm{H}}$	$81.85(\mathrm{GeV})$	1

<Mode>

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}_{\mathrm{H}}+\mathrm{W}_{\mathrm{H}}-$
$\left(\mathrm{W}_{\mathrm{H}}{ }^{ \pm} \rightarrow \mathrm{A}_{\mathrm{H}} \mathrm{W}^{ \pm}\right.$with 100% ratio $)$
- Large cross section
- Dark matter $\left(\mathrm{A}_{\mathrm{H}}\right)$ appears

<Mass spectrum>

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}_{\mathrm{H}}{ }^{+} \mathrm{W}_{\mathrm{H}}{ }^{-}$is the best one to investigate the property of the dark matter predicted in the model.

Observable to be measured

1) Energy edges of $\mathrm{W}^{ \pm}$
\rightarrow lead to masses of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$and A_{H} bosons

2) Production angle of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$ \rightarrow lead to spin of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$boson

3) Angular distribution of reconstructed jets from associated $\mathrm{W}^{ \pm}$boson decays \rightarrow lead to helicity of $\mathrm{W}^{ \pm}$boson

Analysis framework

<Event generation>

MadGraph : for LHT process
Physsim : for Standard Model process

- helicity amplitude calculation
- gauge boson polarization effect
- phase space integration and generation of parton 4-momenta
<Hadronization>
PYTHIA
- parton showering and hadronization

<Detector simulation>
J SFQuickSimulator
- create vertex-detector hits
- smear charged-track parameters in central tracker
- simulate calorimeter signals as from individual segments

Analysis framework

<Simulation setup>

- Center-of-mass energy : 1TeV
- Integrated luminosity : $500 \mathrm{fb}^{-1}$
- Beam polarization : no
- Crossing angle of beams : no
- Beamstrahlung
: ignored
- Initial-state radiation
: ignored
<Detector parameter>

Detector	Performance	Coverage
VTX	$\delta_{b} \leq 5 \oplus 10 / p \beta \sin ^{3 / 2} \theta(\mu \mathrm{~m})$	$\|\cos \theta\| \leq 0.90$
TPC	$\delta p_{t} / p_{t}^{2} \leq 5 \times 10^{-5}(\mathrm{GeV} / \mathrm{c})^{-1}$	$\|\cos \theta\| \leq 0.98$
ECAL	$\sigma_{E} / E=12 \% / \sqrt{E} \oplus 1 \%$	$\|\cos \theta\| \leq 0.98$
HCAL	$\sigma_{E} / E=33 \% / \sqrt{E} \oplus 2 \%$	$\|\cos \theta\| \leq 0.98$

Ref) GLD Detector Outline Document Ver.1.2.1

Event selection

$<$ Signal>
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}_{\mathrm{H}}{ }^{+} \mathrm{W}_{\mathrm{H}}^{-}$

- $\mathrm{W}_{\mathrm{H}^{ \pm}}$decays to $\mathrm{A}_{\mathrm{H}} \mathrm{W}^{ \pm}$
- followed by $\mathrm{W}^{ \pm} \rightarrow$ qq-bar
- Large missing energy
- 4 jets in final state
<Event display>

<Diagram>

Event selection

<LHT background>
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}_{\mathrm{H}} \mathrm{Z}_{\mathrm{H}}$

- Z_{H} decays to $\mathrm{A}_{\mathrm{H}} \mathrm{h}$
- followed by $\mathrm{h} \rightarrow$ qq-bar

<Standard Model background>
(Large cross section)
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
$\mathrm{e}^{+} \mathrm{e}^{-}-\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{W}^{+} \mathrm{W}^{-}$
(Small cross section)
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu \mathrm{VW}^{+} \mathrm{W}^{-}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \mathrm{Z}$
- followed by $\mathrm{W}^{ \pm} \rightarrow$ qq-bar $Z \rightarrow v v$-bar

Event selection

<Selection cut>
All events are forced to 4 jets in final state $\chi_{w}{ }^{2} \quad: \chi^{2}$ for $W^{ \pm}$reconstruction from jets
$\mathrm{P}_{\mathrm{T}}{ }^{\text {miss }}$: Missing transverse momentum

$$
\chi_{w}{ }^{2}=\left(\frac{m_{W_{1}}-m_{W}}{\sigma_{m_{W}}}\right)^{2}+\left(\frac{m_{W_{2}}-m_{W}}{\sigma_{m_{W}}}\right)^{2}
$$

<Cut statistics and breakdown of efficiency>

Selection cut	$W_{H}^{+} W_{H}^{-}$	$W^{+} W^{-}$	$e^{+} e^{-} W^{+} W^{-}$	$Z_{H} Z_{H}$	$\nu \bar{\nu} W^{+} W^{-}$	$W^{+} W^{-} Z$
$\sigma(\mathrm{fb})$	122	1306	490	19	7.2	5.6
No cut	$60,500(1.00)$	$653,000(1.00)$	$245,000(1.00)$	$9,500(1.00)$	$3,600(1.00)$	$2,800(1.00)$
$\chi_{W}^{2} \leq 10$	$51,400(0.85)$	$238,000(0.37)$	$144,000(0.59)$	$431(0.05)$	$2,820(0.78)$	$1,970(0.70)$
$P_{T}^{\text {miss }} \geq 50 \mathrm{GeV} / \mathrm{c}$	$57,000(0.95)$	$51,200(0.07)$	$(8,700(0.04)$	$8,780(0.92)$	$2,980(0.83)$	$2,500(0.89)$
Total	$48,300(0.80)$	$8,680(0.01)$	$2,550(0.01)$	$395(0.04)$	$2,350(0.65)$	$1,800(0.64)$

\#event (efficiency)
$\mathrm{W}^{+} \mathrm{W}^{-}$and $\mathrm{e}^{+} e^{-} \mathrm{W}^{+} \mathrm{W}^{-}$are effectively reduced by $\mathrm{P}_{\mathrm{T}}^{\text {miss }}$ cut. $Z_{H} Z_{H}$ is negligible after $\chi_{w}{ }^{2}$ cut.
$\nu \nu \mathrm{W}^{+} \mathrm{W}^{-}$and $\mathrm{W}^{+} \mathrm{W}^{-} \mathrm{Z}$ remain after 2 cuts.

Result

1) Energy edge of $W^{ \pm}$

- Fit method
- Result of fit

2) Production angle of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$

- Reconstruction of $\mathrm{W}_{\mathrm{H}^{ \pm}}$from $\mathrm{W}^{ \pm}$
- $\cos \theta$ distribution

3) Angular distribution of reconstructed jets from associated $\mathrm{W}^{ \pm}$boson decays

- Boost jets to $\mathrm{W}^{ \pm}$rest frame
- | $\cos \theta \mid$ distribution

1) Energy edges of $\mathrm{W}^{ \pm}$

<Fit function>

$$
\begin{array}{r}
F_{\text {error }}\left(E_{W}, \operatorname{par}[]\right)=\frac{1}{4} \operatorname{par}[0]\left(1+\operatorname{Erf}\left(\frac{E_{W}-E_{\min }}{\operatorname{par}[1]}\right)\right)\left(1-\operatorname{Erf}\left(\frac{E_{W}-E_{\max }}{\operatorname{par}[2]}\right)\right) \\
F_{\text {poly }}\left(E_{W}, \operatorname{par}[]\right)=1+\operatorname{par}[3] E_{W}+\operatorname{par}[4] E_{W}^{2}+\operatorname{par}[5] E_{W}^{3}+\operatorname{par}[6] E_{W} 4 \\
{\left[E_{\min }, E_{\max }: \operatorname{edge}\right]\left[\operatorname{Erf}(x) \equiv \int_{0}^{x} \frac{2}{\sqrt{\pi}} \exp \left(-t^{2}\right) d t\right]}
\end{array}
$$

<Fit step>

1) Cheat $E_{\text {min }}, E_{\text {max }}$
$F_{\text {fit1 }}=F_{\text {error }}($ par [1,2]) \rightarrow Get resolution(par[1,2])
2) Cheat $\mathrm{E}_{\text {min }}, \mathrm{E}_{\text {max }}$ \& Fix par $[1,2]$ $F_{\text {fitz }}=F_{\text {error }} \times F_{\text {poly }}($ par[3~9]) \rightarrow Get shape(par[3~9])
3) Fix par[1~9]
$F_{\text {fit3 }}=F_{\text {error }}\left(E_{\text {min,max }}\right) \times F_{\text {poly }}\left(E_{\text {min,max }}\right)$ \rightarrow Get edge($\mathrm{E}_{\text {min }}, \mathrm{E}_{\max }$)
\rightarrow Calculate mass $\left(\mathrm{m}_{\mathrm{AH}}, \mathrm{m}_{\mathrm{WH}}\right)$

1) Energy edges of $W^{ \pm}$

$<$ Result of fit>

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{AH}}=82.49 \pm 1.10: 0.58 \\
& \mathrm{~m}_{\mathrm{wH}}=367.7 \pm 1.0: 0.50
\end{aligned}
$$

(True)
$\mathrm{m}_{\mathrm{AH}}=81.85$
$\mathrm{m}_{\mathrm{WH}}=368.2$
accuracy $=\frac{m_{\text {True }}-m_{\text {Fit }}}{\sigma_{\text {Fit }}}$
Masses of A_{H} and $W_{H}{ }^{ \pm}$are determined with high accuracy!!

2) Production angle of $\mathrm{W}_{\mathrm{H}^{ \pm}}$

$<$ Reconstruction of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$from $\mathrm{W}^{ \pm}>$
$\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$candidates are reconstructed as corn around $\mathrm{W}^{ \pm}$.
If $\mathrm{W}_{\mathrm{H}}{ }^{+}$and $\mathrm{W}_{\mathrm{H}}{ }^{-}$are assumed as back-to-back, there are 2 solutions for $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$candidates.

In this mode, however, 2 solutions should be close to true $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$.
$<\mathrm{W}_{\mathrm{H}}{ }^{+}$of generator information>

2) Production angle of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$

$<\mathrm{W}_{\mathrm{H}}{ }^{+}$and $\mathrm{W}_{\mathrm{H}}{ }^{-}$of detector simulation $>$

This shape shows $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$spin as spin-1.

3) Angular distribution of jets

$<$ Rest frame of $\mathrm{W}^{+}>$

<Angular distribution of jets>

This shape shows $\mathrm{W}^{ \pm}$helicity as longitudinal mode.

Conclusion

$\square \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}_{\mathrm{H}}{ }^{+} \mathrm{W}_{\mathrm{H}}{ }^{-}$is the best mode to investigate the LHT model.

- Background candidates are $\mathrm{W}^{+} \mathrm{W}^{-}$, $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{W}^{+} \mathrm{W}^{-}, \mathrm{Z}_{\mathrm{H}} \mathrm{Z}_{\mathrm{H}}$, $v \nu W^{+} W^{-}$and $W^{+} W^{-} Z$.
- Selection cuts, $\chi_{\mathrm{w}}{ }^{2}<10$ and $\mathrm{P}_{\mathrm{T}}{ }^{\text {miss }}>50(\mathrm{GeV})$, reduce effectively backgrounds.

1) Masses of A_{H} and $W_{H}{ }^{ \pm}$are determined with high accuracy: 0.58 and 0.40 .
2) Spin of $\mathrm{W}_{\mathrm{H}}{ }^{ \pm}$can be determined as spin-1.
3) Helicity of $\mathrm{W}^{ \pm}$can be determined as longitudinal mode.
