Higgs Triplets, Decoupling and
Precision Measurements

Chris Jackson
Argonne National Lab

4

Argonne

NATIONAL

Based on arXiv:0809.4185
(with M.-C. Chen and S. Dawson)




Outline

Some motivation
Renormalization of the SM and different schemes

Extensions to models beyond the SM
(in particular models with Ap # 1 at tree-level)

Case study: SM plus Triplet Higgs

One-loop corrections to W boson mass
Pros and cons of different renormalization schemes
Decoupling vs. non-decoupling?

Take Home Message: Correct renormalization
procedure is complicated... and it matters!




Motivation
e Pre-LHC Game Plan:

e \Write down your “model of the week”

® Assume new physics contributes primarily to gauge
boson two-point functions

Calculate contribution of new (heavy) particles to EW
observables (such as Peskin-Takeuchi S, T and U)

Extract limits on model parameters (masses,
couplings, etc.)

e HOWEVER: this approach must be modified for models

which generate corrections to the p parameter at tree-
level.




Some Examples

SU(5) GUTs (Georgi and Glashow, PRL32 (1974), 438)
Little Higgs (without T parity)

U(1) Extensions of SM
(Mixing of Z and Z’ breaks custodial symmetry)

In general, for models with multiple Higgses in different multiplets:
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where | = isospin and |z = 3rd component of neutral component of the
Higgs multiplet.

For example, for the minimal (Standard) model, | = 1/2 and |3 = -1/2
and po = 1

However, if we add an SU(2) triplet to the mix (I = 1 and I3 = 0):
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SM Renormalization Schemes

In the SM gauge sector (after SSB), there are 3 fundamental
parameters (g, g’ and Higgs vey, v)

In order to determine all of the SM parameters need (at least) three
(well-measured) input observables
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® “On-shell Scheme” (a, Mw and Mz):  siy =1 — 7. ]
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e “Mz Scheme” (a, GF and Mz): sin(26z) J

e ‘“Effective Mixing angle scheme” (a, Gr and sin?6.;;): Mz = Mw/coSBe

e All schemes identical at tree-level




Muon Decay in the SM

e At tree-level, muon decay (or Gr... or Gy) related to input parameters
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e At one-loop:
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The quantity Ar is a physical parameter




Arsm in Different Renormalization Schemes

® Compute leading SM Higgs mass dependence

"OS Scheme"
"MZ Scheme"

——————— "Effective Sy Scheme"
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e Strong scheme dependence... however, with higher-order corrections,
schemes agree!

e Beyond the SM conclusions typically drawn from one-loop results




Renormalization for Models with ptree # 1

e (Can'’t use relations like: Mw = Mz cosBes
® |n other words, it seems we need one additional input parameter

e (Choices for renormalization scheme:

e Use four low-energy inputs (e.g., a, Gr, sin®.;r and Mz):
A = f(a, G, sin‘f.;rand Mz)

(Pro: eliminate one parameter; Con: eliminate one parameter)

Use only three SM inputs (e.g., a, Gr, and Mz):

(Pro: full parameter space; Con: loss of predictability?)

Use three low-energy inputs plus one “high-energy” input
(e.g., measured couplings/masses of new particles)
(Con: no “high-energy” inputs!)




Case Study: SM + Triplet Higgs




The Model

Simplest extension of SM with ptree # 1:
SM with a real Higgs doublet plus a real isospin (Y = 0) triplet
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Coupled to gauge fields via usual covariant derivative(s):
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e Gauge boson masses: M2 — -"Z(v2+4vi2) and M2 —

Mg,
7T M2 PDG: v’ < 12 GeV
2 (neglecting scalar loops)

® p parameter @ tree-level:




More on the Model

Most general scalar potential:
P ‘ ‘Ltﬁ B . /\o ‘
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Note: A4 has dimensions of mass — non-decoupling!
(Chivukula et al., PRD77, (2008))

After SSB:
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where: tand =2 v'/v

Minimize the potential:
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.and finally

e Trade original parameters for M-, Myo, Mo, v, 6, v.
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e Note:inthev — 0 Ilimit...

® sind=siny =0 \ Custodial Symmetry

Restored!
o )\4 —_— O

o Mpy+ = Mgo (from A2 relation)




Renormalization and
EW Observables In

the Triplet Model




Renormalization of the Triplet Model

e EW observable of choice: the W boson mass and compare SM vs. TM

At tree-level, the W mass is related to the input parameters:
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When p # 1, more inputs are required (?)

At one-loop level, corrections encoded in Ar:
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And Ar is a function of the one-loop corrected self-energies:
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N Q " M%w-l- W%m-l_mw

e Scalar loops: contributions from HY, K% and Ht* (for arbitrary y and &)

* SM gauge boson contributions included since different values of Mw and/or Mz
used in “SM” and “TM” calculations of Ar (see below)

* Vertex/box contributions (not shown) also included in order to ensure finite
result (“pinch” contributions are a subset of full vertex/box pieces)




Scheme #1

Input 4 low-energy parameters: (a, Gr,sin%6,;, and Mz)

G, = 1.16637(1) x 107> GeV *
M, = 91.1876(21) GeV
o' = 137.035999679(94)

sin? 6. = .2324 + 0012 . From identifying sin6 with
N = effective mixing angle
measured at Z pole

CT for sin®f.;y :
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Compare results for TM to SM in the “Effective mixing angle
scheme” (in order to check decoupling):

o Mw(tree) in both SM and TM: Mw(tree) = 80.159 GeV

e However, Mz(tree) in SM different: Mz(tree) = 91.329 GeV

Note: tadpoles cancel!




Scheme #1 (cont.)

With the additional input parameter, we can eliminate one of the TM
parameters, e.g.:
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This sets v' and the mixing angle o:

v =6.848 GeV > sind = 0.056

Model is over-constrained... i.e., lose ability to scan full parameter
space

In the following, we consider the difference between the TM prediction
and the SM...



Testing Decoupling

Besides renormalization scheme dependence, also interested in

(non)decoupling behavior of Mw:
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M. = (1+Ar)

First, calculate Ar in TM (using input value of Mz):

Artm = Arsm + Arq + f(sind, siny)

Next, calculate Ar in SM (using Mz calculated from inputs):

Areff. = Arsm

Note: difference of two Arsm quantities # 0 (because of different Mz’s)

Finally, plot the difference:
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AMw = Mw(Areft.) - Mw(Artv)
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“Decoupling”
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Scheme 1 Results

e (Consider small mass M, §?£ec§g?~,l- 0.1

splittings (perturbativity) T S —

'- — AM=0
o For Mko= My:: ' 1A Ml = 10 GeV
-~ 1A Ml =20 GeV

® v =sind=siny=0

Value of AMw due to
different Mz's used in
Individual pieces
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For larger splittings,
sizable effects at low Mp:
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Scheme #2

e |nput only three low-energy observables (a, Gr, and Mz) plus one
‘running” parameter (v')

e Naturally connects with SM “Mz Scheme”

e Now, sin?0 and Mw are calculated quantities:

SM

dra(My)
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My, =

sin(260,) = J

e
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Calculate corrections to Mw in the same manner as Scheme #1

Claim: “more natural approach to SM limit”
(Chankowski et al., hep-ph/0605302)




Scheme #2 Results: v =0

For v’ = 0: only solution to
minimization conditions...

Y = 0 and Mko = My:

No large effects from TM
scalar sector

Decoupling of TM scalar
sector is apparent

M,

Scheme 2
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Scheme #2 Results: v  # (0

As soon as v’ # 0, then
M#FO

Since A4 has dimensions,
we shouldn’t expect
decoupling

Large non-decoupling
effects from TM scalar
sector:

Ar1 = (V'] v)?

(See Chivukula et al.,
PRD77, 035001 (2008))

No Tadpoles
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Scheme #2 Results: v  # (0

siny = 0.1

AM =0 GeV
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e L arge corrections from non-cancellation of M? terms:
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Scheme #2 Results: Attack of the Tadpoles

® |n SM (and in Scheme #1 for TM), tadpoles cancel

® Not so in Scheme #2 for non-zero VvV’

ipole
Ar!.;-i;)h:((SC}Lenle 2)&1(.,)0( —

e Tadpole contributions grow
as:

Arltadpoles ~ (M H’—’)2

* Note ridiculous scale!

tadpole tadpole

HZZ + 1 11 W W }
0 ~ 12

M3 1 —4y/202G, My

siny = 0.1

AM =0 GeV

v'=3 GeV

V'=6.8 GeV Tadpoles only




Those Darn Tadpoles

Even for v'(tree) = 0, tadpoles generate an effective v’
(Chankowski et al., hep-ph/0605302)

No physical motivation for definition of v' in simplest Triplet Model
(GUTs may have natural way to define v’)

What we're missing is a renormalization condition for v" to cancel
tadpole contributions (“Scheme #377)

However, even in “Scheme #3”:
e Fine-tuning?

e Non-tadpole contributions still large in this scheme!




Conclusions

Models with Ap # 1 at tree-level require four input parameters for a
correct renormalization procedure

Important to compare BSM results with appropriate SM scheme
Considered two schemes for the Triplet Model

e Fourlow-energy input scheme: non-decoupling effects due to
different values of Mz (due to Ap # 1)

Three low-energy inputs and one running parameter:
contributions to Ar much larger than previous scheme

In both cases, effects of scalar loops critical

Beware of the tadpoles!

Correct renormalization procedure is complicated... and it matters!




