Higgs Triplets, Decoupling and Precision Measurements

Chris Jackson Argonne National Lab

Based on arXiv:0809.4185 (with M.-C. Chen and S. Dawson)

<u>Outline</u>

- Some motivation
- Renormalization of the SM and different schemes
- Extensions to models beyond the SM (in particular models with ∆p ≠ 1 at tree-level)
- <u>Case study</u>: SM plus Triplet Higgs
- One-loop corrections to W boson mass
- Pros and cons of different renormalization schemes
- Decoupling vs. non-decoupling?
- <u>Take Home Message</u>: Correct renormalization procedure is complicated... and it matters!

Motivation

- Pre-LHC Game Plan:
 - Write down your "model of the week"
 - Assume new physics contributes primarily to gauge boson two-point functions
 - Calculate contribution of new (heavy) particles to EW observables (such as Peskin-Takeuchi S, T and U)
 - Extract limits on model parameters (masses, couplings, etc.)
- <u>HOWEVER</u>: this approach must be modified for models which generate corrections to the ρ parameter at treelevel.

Some Examples

- SU(5) GUTs (Georgi and Glashow, PRL32 (1974), 438)
- Little Higgs (without T parity)
- U(1) Extensions of SM (Mixing of Z and Z' breaks custodial symmetry)
- In general, for models with multiple Higgses in different multiplets:

$$\rho_0 = \frac{\sum_i v_i^2 [I_i(I_i+1) - I_{3i}^2]}{2\sum_i v_i^2 I_{3i}^2}$$

where I = isospin and I_3 = 3rd component of neutral component of the Higgs multiplet.

- For example, for the minimal (Standard) model, I = 1/2 and I₃ = -1/2 and $\rho_0 = 1$
- However, if we add an SU(2) triplet to the mix $(I = 1 \text{ and } I_3 = 0)$:

$$\rho_0 = 1 + 4 \frac{v_{trip}^2}{v_{doub}^2}$$

SM Renormalization Schemes

- In the SM gauge sector (after SSB), there are 3 fundamental parameters (g, g' and Higgs vev, v)
- In order to determine all of the SM parameters need (at least) three (well-measured) input observables
- <u>Pick your scheme</u>: • "On-shell Scheme" (α , M_W and M_Z): $s_W^2 = 1 - \frac{M_W^2}{M_Z^2}$. • "M_Z Scheme" (α , G_F and M_Z): $\sin(2\theta_Z) \equiv \sqrt{\frac{4\pi\alpha(M_Z)}{\sqrt{2}G_\mu M_Z^2}}$. ; M_W = M_Z cos θ_{eff}
 - "Effective Mixing angle scheme" (α , G_F and $sin^2\theta_{eff}$): M_Z = M_W/cos θ_{eff}
- All schemes identical at tree-level

Muon Decay in the SM

• At tree-level, muon decay (or G_{F} ... or G_{μ}) related to input parameters

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8\sin^2\theta_W M_W^2}$$

• At one-loop:

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} \left[1 + \frac{\hat{\Sigma}^{WW}(0)}{M_W^2} + \delta_{VB} \right]$$
$$\equiv \frac{e^2}{8s_W^2 M_W^2} \left[1 + \Delta r \right]. \tag{136}$$

• where:

$$\Delta r_{SM} = -\frac{\delta G_{\mu}}{G_{\mu}} - \frac{\delta M_W^2}{M_W^2} + \frac{\delta \alpha}{\alpha} - \frac{\delta s_{\theta}^2}{s_{\theta}^2} \quad (+ \delta_{VB})$$

• The quantity Δr is a physical parameter

Δr_{SM} in Different Renormalization Schemes

• Compute leading SM Higgs mass dependence

- Strong scheme dependence... however, with higher-order corrections, schemes agree!
- Beyond the SM conclusions typically drawn from one-loop results

Renormalization for Models with $\rho_{tree} \neq 1$

- Can't use relations like: $M_W = M_Z \cos \theta_{eff}$
- In other words, it seems we need one additional input parameter
- <u>Choices for renormalization scheme</u>:
 - Use four low-energy inputs (e.g., α , G_F, $sin^2\theta_{eff}$ and M_Z): $\lambda = f(\alpha, G_F, sin^2\theta_{eff} \text{ and } M_Z)$ (<u>Pro</u>: eliminate one parameter; <u>Con</u>: eliminate one parameter)
 - Use only three SM inputs (e.g., α, G_F, and M_Z):
 (Pro: full parameter space; <u>Con</u>: loss of predictability?)

 Use three low-energy inputs plus one "high-energy" input (e.g., measured couplings/masses of new particles) (<u>Con</u>: no "high-energy" inputs!)

<u>Case Study</u>: SM + Triplet Higgs

The Model

 Simplest extension of SM with ρ_{tree} ≠ 1: SM with a real Higgs doublet *plus* a real isospin (Y = 0) triplet

$$H = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v+h^0+i\chi^0) \end{pmatrix}, \qquad \Phi = \begin{pmatrix} \eta^+ \\ v'+\eta^0 \\ -\eta^- \end{pmatrix}$$

• Coupled to gauge fields via usual covariant derivative(s):

$$L = \mid D_{\mu}H \mid^{2} + \frac{1}{2} \mid D_{\mu}\Phi \mid^{2}$$

where:

$$D_{\mu}H = \left(\partial_{\mu} + i\frac{g}{2}\tau^{a}W^{a} + i\frac{g'}{2}YB_{\mu}\right)H \qquad \qquad D_{\mu}\Phi = \left(\partial_{\mu} + igt_{a}W^{a}\right)\Phi$$

• Gauge boson masses:
$$M_W^2 = rac{g^2}{4} \left(v^2 + 4 v'^2 \right)$$
 and $M_Z^2 = rac{g^2}{4 c_\theta^2} v^2$

• ρ parameter @ tree-level: ρ

$$\begin{split} \rho \ &= \ \frac{M_W^2}{M_Z^2 c_\theta^2} \\ &= \ 1 + 4 \frac{{v'}^2}{v^2} \,. \end{split}$$

PDG: v´ < 12 GeV (neglecting scalar loops)

More on the Model

• Most general scalar potential:

$$\begin{split} V \ &= \ \mu_1^2 \mid H \mid^2 + \frac{\mu_2^2}{2} \mid \Phi \mid^2 + \lambda_1 \mid H \mid^4 + \frac{\lambda_2}{4} \mid \Phi \mid^4 \\ &+ \frac{\lambda_3}{2} \mid H \mid^2 \mid \Phi \mid^2 + \lambda_4 H^{\dagger} \sigma^a H \Phi_a \,, \end{split}$$

- Note: λ₄ has dimensions of mass → non-decoupling! (Chivukula et al., PRD77, (2008))
- <u>After SSB</u>:

$$\begin{pmatrix} H^{0} \\ K^{0} \end{pmatrix} = \begin{pmatrix} c_{\gamma} & s_{\gamma} \\ -s_{\gamma} & c_{\gamma} \end{pmatrix} \begin{pmatrix} h^{0} \\ \eta^{0} \end{pmatrix} \qquad \qquad \begin{pmatrix} G^{+} \\ H^{+} \end{pmatrix} = \begin{pmatrix} c_{\delta} & s_{\delta} \\ -s_{\delta} & c_{\delta} \end{pmatrix} \begin{pmatrix} \phi^{+} \\ \eta^{+} \end{pmatrix}$$

where: $tan\delta = 2 v'/v$

• <u>Minimize the potential</u>:

$$0 = v \left(\mu_1^2 + \lambda_1 v^2 + \frac{\lambda_3}{2} v'^2 - \lambda_4 v' \right)$$

$$0 = v' \left(\mu_2^2 + \lambda_2 v'^2 + \lambda_3 \frac{v^2}{2} \right) - \lambda_4 \frac{v^2}{2}.$$

...and finally

• Trade original parameters for $M_{H^+}, M_{H^0}, M_{K^0}, \gamma, \delta, v$.

$$\begin{split} \lambda_1 &= \frac{1}{2v^2} \Big(c_{\gamma}^2 M_{H^0}^2 + s_{\gamma}^2 M_{K^0}^2 \Big) \\ \lambda_2 &= \frac{2}{v^2} \cot^2 \delta \Big[s_{\gamma}^2 M_{H^0}^2 + c_{\gamma}^2 M_{K^0}^2 - c_{\delta}^2 M_{H^+}^2 \Big] \\ \lambda_3 &= \frac{1}{v^2 \tan \delta} \Big[(M_{H^0}^2 - M_{K^0}^2) \sin(2\gamma) + M_{H^+}^2 \sin(2\delta) \Big] \\ \lambda_4 &= c_{\delta} s_{\delta} \frac{M_{H^+}^2}{v} \\ \mu_1^2 &= -\frac{M_{H^0}^2}{2} \Big(c_{\gamma}^2 + \frac{s_{\gamma} c_{\gamma}}{2} \tan \delta \Big) - \frac{M_{K^0}^2}{2} \Big(s_{\gamma}^2 - \frac{s_{\gamma} c_{\gamma}}{2} \tan \delta \Big) + \frac{M_{H^+}^2}{4} s_{\delta}^2 \\ \mu_2^2 &= \frac{c_{\delta}^2}{2} M_{H^+}^2 - \frac{M_{H^0}^2}{2} \Big(s_{\gamma}^2 + \sin(2\gamma) \cot \delta \Big) - \frac{M_{K^0}^2}{2} \Big(c_{\gamma}^2 - \sin(2\gamma) \cot \delta \Big) \,. \end{split}$$

• Note: in the $v' \rightarrow 0$ limit...

• $M_{H^+} = M_{K^0}$ (from λ_2 relation)

Renormalization and EW Observables in the Triplet Model

Renormalization of the Triplet Model

- <u>EW observable of choice</u>: the W boson mass and compare SM vs. TM
- At tree-level, the W mass is related to the input parameters:

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} s_{\theta}^2 c_{\theta}^2 M_Z^2 \rho} = \frac{\pi \alpha}{\sqrt{2} s_{\theta}^2 M_W^2} \qquad \rho = \frac{M_W^2}{c_{\theta}^2 M_Z^2} = 1$$

- When $\rho \neq 1$, more inputs are required (?)
- At one-loop level, corrections encoded in Δr :

$$M_W^2 = \frac{\alpha \pi}{\sqrt{2} s_{\theta}^{eff\,2} G_{\mu}} (1 + \Delta r)$$

• And Δr is a function of the one-loop corrected self-energies:

$$\Delta \Gamma = -rac{\delta G_{\mu}}{G_{\mu}} - rac{\delta M_W^2}{M_W^2} + rac{\delta lpha}{lpha} - rac{\delta s_{ heta}^2}{s_{ heta}^2}$$

$$= \frac{\Pi_{WW}(0) - \Pi_{WW}(M_W^2)}{M_W^2} + \Pi_{\gamma\gamma}'(0) + 2\frac{s_{\theta,eff}}{c_{\theta,eff}}\frac{\Pi_{\gamma Z}(0)}{M_Z^2} - \frac{\delta s_{\theta,eff}^2}{s_{\theta,eff}^2}$$

- <u>Scalar loops</u>: contributions from H⁰, K⁰ and H[±] (for arbitrary γ and δ)
- <u>SM gauge boson contributions</u> included since different values of M_W and/or M_Z used in "SM" and "TM" calculations of Δr (see below)
- <u>Vertex/box contributions</u> (not shown) also included in order to ensure finite result ("pinch" contributions are a subset of full vertex/box pieces)

Scheme #1

Input 4 low-energy parameters: (α , $G_{F_1}sin^2\theta_{eff}$ and M_Z)

$$\begin{split} G_{\mu} &= 1.16637(1) \times 10^{-5} \ GeV^{-2} \\ M_{Z} &= 91.1876(21) \ GeV \\ \alpha^{-1} &= 137.035999679(94) \\ \sin^{2}\theta_{eff} &= .2324 \pm .0012 \\ \end{split}$$
 From identifying sin θ with effective mixing angle

CT for $sin^2\theta_{eff}$:

$$\frac{\delta s_{\theta,eff}^2}{s_{\theta,eff}^2} = \left(\frac{c_{\theta,eff}}{s_{\theta,eff}}\right) \frac{\Pi_{\gamma Z,SM}(M_Z^2)}{M_Z^2} + \mathcal{O}(m_e^2)$$

measured at Z pole

- Compare results for TM to SM in the "Effective mixing angle scheme" (in order to check decoupling):
 - M_W (tree) in both SM and TM: M_W (tree) = 80.159 GeV
 - However, M_Z (tree) in SM different: M_Z (tree) = 91.329 GeV
- Note: tadpoles cancel!

Scheme #1 (cont.)

With the additional input parameter, we can eliminate one of the TM parameters, e.g.:

$$ho \;=\; rac{M_W^2}{M_Z^2 c_ heta^2} = 1 + 4 rac{v'^2}{v^2} \,.$$

• This sets v' and the mixing angle δ :

$$v' = 6.848 \text{ GeV} \longrightarrow \sin \delta = 0.056$$

- Model is over-constrained... i.e., lose ability to scan full parameter space
- In the following, we consider the difference between the TM prediction and the SM...

Testing Decoupling

 Besides renormalization scheme dependence, also interested in (non)decoupling behavior of M_W:

$$M_W^2 = \frac{\alpha \pi}{\sqrt{2} s_{\theta}^{eff\,2} G_{\mu}} (1 + \Delta r)$$

• First, calculate Δr in TM (using input value of M_Z):

$$\Delta \mathbf{r}_{TM} = \Delta \mathbf{r}_{SM} + \Delta \mathbf{r}_1 + f(\sin \delta, \sin \gamma)$$

• Next, calculate Δr in SM (using M_z calculated from inputs):

$$\Delta r_{eff.} = \Delta r_{SM}$$

- <u>Note</u>: difference of two Δr_{SM} quantities $\neq 0$ (because of different M_Z's)
- Finally, plot the difference:

"Decoupling" $\Delta M_W = 0$

$$\Delta M_W = M_W(\Delta r_{eff.}) - M_W(\Delta r_{TM})$$

Scheme 1 Results

- Consider small mass splittings (perturbativity)
- For $M_{K^0} = M_{H^{\pm}}$:
 - $v' = \sin \delta = \sin \gamma = 0$
 - Value of ∆M_W due to different M_Z's used in individual pieces
- For larger splittings, sizable effects at low M_{H[±]}
- For small values of mixings/mass-splittings:

$$\Delta_{r,1} \to \frac{\alpha}{24\pi \sin^2 \theta_{eff}} \Big\{ \frac{M_{K^0}^2 - M_{H^+}^2}{M_{H^+}^2} \Big\} + \dots$$

Scheme #2

- Input only three low-energy observables (α, G_F, and M_Z) plus one "running" parameter (v´)
- Naturally connects with SM "Mz Scheme"
- Now, $\sin^2\theta$ and M_W are calculated quantities:

- Calculate corrections to M_W in the same manner as Scheme #1
- <u>Claim</u>: "more natural approach to SM limit" (Chankowski et al., hep-ph/0605302)

Scheme #2 Results: v' = 0

Scheme #2 Results: v' ≠ 0

- As soon as v´ ≠ 0, then
 λ₄ ≠ 0
- Since λ₄ has dimensions, we shouldn't expect decoupling
- Large non-decoupling effects from TM scalar sector:

$$\Delta r_1 \simeq (v' / v)^2$$

(See Chivukula et al., PRD77, 035001 (2008))

<u>Scheme #2 Results: v′ ≠ 0</u>

• Large corrections from non-cancellation of M² terms:

$$\frac{\delta \hat{s}_Z^2}{\hat{s}_Z^2} \sim \frac{\hat{c}_Z^2}{\hat{c}_Z^2 - \hat{s}_Z^2} \Big\{ -\frac{\Pi_{ZZ}(M_Z^2)}{M_Z^2} + \frac{1}{1 - 4\sqrt{2}v'^2 G_{\mu}} \frac{\Pi_{WW}(0)}{M_W^2} \Big\}$$

Scheme #2 Results: Attack of the Tadpoles

- In SM (and in Scheme #1 for TM), tadpoles cancel
- Not so in Scheme #2 for non-zero v'

$$\Delta r_{triplet} (Scheme \ 2)^{tadpole} = \frac{\hat{c}_Z^2}{\hat{c}_Z^2 - \hat{s}_Z^2} \Big\{ -\frac{\Pi_{ZZ}^{tadpole}}{M_Z^2} + \frac{1}{1 - 4\sqrt{2}v'^2 G_{\mu}} \frac{\Pi_{WW}^{tadpole}}{M_W^2} \Big\}$$

Those Darn Tadpoles

- Even for v'(tree) = 0, tadpoles generate an effective v' (Chankowski et al., hep-ph/0605302)
- No physical motivation for definition of v' in simplest Triplet Model (GUTs may have natural way to define v')
- What we're missing is a renormalization condition for v' to cancel tadpole contributions ("Scheme #3"?)
- However, even in "Scheme #3":
 - Fine-tuning?
 - Non-tadpole contributions still large in this scheme!

Conclusions

- Models with ∆p ≠ 1 at tree-level require four input parameters for a correct renormalization procedure
- Important to compare BSM results with appropriate SM scheme
- Considered two schemes for the Triplet Model
 - Four low-energy input scheme: non-decoupling effects due to different values of M_Z (due to $\Delta \rho \neq 1$)
 - <u>Three low-energy inputs and one running parameter</u>: contributions to Δr much larger than previous scheme
- In both cases, effects of scalar loops critical
- Beware of the tadpoles!
- Correct renormalization procedure is complicated... and it matters!