# Modelindependent WIMP Searches at the ILC

#### Christoph Bartels, Jenny List

DESY

#### LCWS 2008 - Cosmological Connections

Introduction Data Analysis Sensitivity Mass Resolution Summary And Outlook

Modelindependent WIMP Searches at the ILC

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## Model-independent WIMP searches

### study:

- sensitivity
- mass resolution
- benefits of beam polarisation
- ... with full detector simulation!

### using:

- ► WIMP pair production with ISR:  $e^+e^- \rightarrow \chi \bar{\chi} \gamma$
- main background process:  $e^+e^- \rightarrow \nu \bar{\nu} \gamma$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

A. Birkedal et al. [hep-ph/0403004]

#### What does model-independent mean?

- ▶ No assumptions on the nature of the WIMP interactions
- Dark Matter consists of only one kind of particle
- ▶ WIMP pairs annihilate directly into SM particles  $\chi \overline{\chi} \to X_i \overline{X_i}$  $X_i = e, q, \nu, g, ...$  (no  $\tilde{\tau} \tilde{\chi}_1^0$  coannihilation)
- Annihilation cross section  $\sigma_{an}$  determined by  $\Omega_{DM}$

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

A. Birkedal et al. [hep-ph/0403004]

### Cross-section Derivation

► Annihilation cross section  $\sigma_{an}$  determined by  $\Omega_{DM}$ 



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

A. Birkedal et al. [hep-ph/0403004]

### Cross section derivation

- ▶ Annihilation cross section  $\sigma_{an}$  determined by  $\Omega_{DM}$
- Crossing symmetry:  $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

A. Birkedal et al. [hep-ph/0403004]

### Cross section derivation

- Annihilation cross section  $\sigma_{an}$  determined by  $\Omega_{DM}$
- Crossing symmetry:  $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$
- ▶ Inclusion of ISR:  $\sigma(e^+e^- \rightarrow \chi \overline{\chi} \gamma)$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

A. Birkedal et al. [hep-ph/0403004]

### Cross section parameters

- Free:
  - $\kappa_e$  Fraction of WIMP pair annihilation into  $e^+e^-$
  - $M_{\chi}$  WIMP mass
  - $S_{\chi}$  WIMP spin
  - ► J Angular momentum of dominant partial wave
- From cosmological observation:  $\sigma_{an}$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## Influence of Beam Polarisation

- ▶ Main irreducible background:  $e^-e^+ \rightarrow \nu \bar{\nu} \gamma$  is strongly suppressed for  $e_L^+ e_R^-$
- ▶ WIMP couplings to electrons may have different behaviour!

#### Considered cases for WIMP couplings to electrons

- ▶ like SM charged weak interaction  $\kappa(e_L^- e_R^+)$
- ▶ parity and helicity conserving  $\kappa(e_L^-e_R^+) = \kappa(e_R^-e_L^+)$
- opposite SM charged weak interaction  $\kappa(e_R^-e_L^+)$

#### Expect enhancement of S/B ratio by polarisation!

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

### Detector Optimization & Letters of Intent

#### Timeline for Detector Concepts

- follows machine schedule
- Letters of Intent due March '09
- will be reviewed by International Detector Advisory Group of experimentalists and theoreticians



 promissing concepts will be asked to provide a more detailed design in time with Technical Design Phase II of the machine

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## Detector Optimization & Letters of Intent

#### ILD = GLD + LDC

- various "flavours" of GLD and LDC studied in full simulation (Jupiter / Mokka)
- ▶ varying TPC radius, B-field, # of calorimeter layers, ...
- September 2008: ILD's parameters for Lol fixed
- nearly finished: implementation into simulation, testing, adapting reconstruction algorithms
- any day now: start of MC mass production of about:
  - ▶ 500 fb<sup>-1</sup> Standard Model at  $E_{\rm CM} = 500$  GeV
  - plus SUSY: SPS1a', Point 5
  - SM Higgs + backgrounds at  $E_{\rm CM} = 250$  GeV

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## **Event Generation**

### Standard Model Background

- SLAC SM Whizard sample http://confluence.slac.stanford.edu/display/ilc/Standard+Model+Data+Samples
- incl. beamstrahlung, beam energy spread from GUINEA PIG for nominal ILC beam parameters
- Currently using  $e^+e^- \rightarrow \nu \overline{\nu} \gamma + ISR$

▶ 800k events (10 fb<sup>-1</sup>) at 
$$\sqrt{s} = 500 GeV$$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

### **Event Generation**

### Signal

- Reweighting background according to WIMP cross section
- Benefit: only one MC production needed
- Problem: predicted signal cross-section assumes one collinear photon per event, event sample contains one "hard" photon plus ISR, beamstrahlung



 $\Rightarrow$  need to calculate center-of-mass energy of hard subprocess before applying weight

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

# Detector Simulation and Reconstruction Full GEANT 4 based detector simulation

- within the optimization of the ILD detector concept
  - LDCPrime\_02Sc
  - 3.5 Tesla magnetic field
  - high granularity Si–W electromagnetic calorimeter
  - extended coverage in forward region (Fwd trackers, LumiCal)
- Mokka 06-06-p03

### Reconstruction with MarlinReco 01-04

- Particle Flow: Pandora algorithm
- require:
  - $E_{\gamma} > 10 \text{ GeV}$
  - $6^{\circ} < \theta_{\gamma} < 174^{\circ}$
  - for resolution studies: angular match to generated photon

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## A simulated event



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

### Photon Energy Reconstruction

#### Energy of most energetic photon

► Z<sup>0</sup>-resonance recoil at 240 GeV

- at generator level...
- ... and after simulation and reconstruction
- width of reconstructed Z recoil peak 6.4 GeV
- but not out of the box.....



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |

# **Cluster Splitting**

Particle Flow...

- leads to splitting of high energy clusters and identifies them as individual photons
- ► ⇒ Photon deficit at high energies

### Merging of photons

- recombine neighboring photons
- ►  $\Rightarrow$  significant improvement at high  $E_{\gamma}$



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

# Effect of new detector model & reconstruction?

#### Changes

- Detector: LDC  $\rightarrow$  ILD
- ▶ Reconstruction: Wolf → Pandora
- small goodies: correction for cracks in calorimeters, ...
- ► ⇒ significantly improved energy reconstruction!
- ➤ ⇒ expect significant improvement of results, which should outweigh effects of additional backgrounds



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |

# Sensitivity

Reach for  $3\sigma$  observation with  $\int Ldt = 500 fb^{-1}$ 

- Method: fractional event counting implemented in ROOT::TLimit
- WIMP spin
  - Case 1: P-wave (J=1),  $S_{\chi} = 1$  WIMP
  - Case 2: P-wave (J=1),  $S_{\chi} = \frac{1}{2}$  WIMP
- WIMP couplings
  - coupling to  $e_L^-$  and  $e_R^+$
  - coupling to  $e_R^-$  and  $e_L^+$
  - parity and helicity conserving couplings
- Polarisation
  - unpolarised beams
  - $e^-$  polarisation only ( $P_{e^-} = 0.8$ )
  - additional  $e^+$  polarisation ( $P_{e^+} = 0.6$ )

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

Case 1: P-wave (J=1),  $S_{\chi} = 1$  WIMP

Polarisation:

- full line: unpolarised beams
- dotted line:  $e^-$  only ( $P_{e^-} = 0.8$ )
- dashed line:

additional  $e^+$  ( $P_{e^+} = 0.6$ )

coupling: P & H conserving



coupling:  $e_L^- / e_R^+$ 



Modelindependent WIMP Searches at the ILC

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

Case 2: P-wave (J=1), 
$$S_{\chi} = rac{1}{2}$$
 WIMP

Polarisation:

- full line: unpolarised beams
- dotted line:  $e^-$  only ( $P_{e^-} = 0.8$ )
- dashed line:

additional  $e^+$  ( $P_{e^+} = 0.6$ )

coupling: P & H conserving



coupling:  $e_L^- / e_R^+$ 



| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |

## Recoil Mass Spectrum

#### WIMP:

- ▶ P-wave annihilator (J=1)
- $M_{\chi} = 180 \text{ GeV}$

• 
$$S_{\chi} = 1$$

• 
$$\kappa_e = 1$$

$$M_{recoil}^2 = s - 2\sqrt{s}E_{\gamma}$$

WIMP signal kicks in at  $M_{recoil} = 360 \text{ GeV}$ 



- for sensitivity calculation, E and θ are used instead of recoil mass
- the following results have not yet been updated!

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

- χ<sup>2</sup> test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

### WIMP (Case 1):

- ▶ P-wave annihilator (J=1), S<sub>\chi</sub> = 1
- couplings P & H conversing
- ▶  $M_{\chi} = 150 \text{ GeV}$

•  $\kappa_e = 0.3$ 



- $P_{e^-} = 0.8, P_{e^+} = 0.0$ :
  - $M_\chi = 150.5 \pm 1.3$  GeV

• 
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$M_\chi = 150.4 \pm 0.7~{
m GeV}$$

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

- χ<sup>2</sup> test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

#### WIMP (Case 1):

- P-wave annihilator (J=1),  $S_{\chi} = 1$
- couplings:  $e_R^- / e_L^+$
- ►  $M_{\chi} = 150 \text{ GeV}$



• 
$$P_{e^-} = 0.8, P_{e^+} = 0.0$$
:

$$M_\chi = 150.5 \pm 1.0~{
m GeV}$$

• 
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$\textit{M}_{\chi} = 150.3 \pm 0.6 ~\rm{GeV}$$

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

- χ<sup>2</sup> test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

#### WIMP (Case 2):

- P-wave annihilator (J=1),  $S_{\chi} = \frac{1}{2}$
- couplings: P & H conserving
- ▶  $M_{\chi} = 180 \text{ GeV}$

•  $\kappa_e = 0.3$ 



• 
$$P_{e^-} = 0.8, P_{e^+} = 0.0$$
:

$$M_\chi = 181.0 \pm 1.7$$
 GeV

• 
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$M_\chi = 180.5 \pm 0.9~{
m GeV}$$

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

- χ<sup>2</sup> test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

#### WIMP (Case 2):

- P-wave annihilator (J=1),  $S_{\chi} = \frac{1}{2}$
- couplings:  $e_R^- / e_L^+$
- ►  $M_{\chi} = 180 \text{ GeV}$



- $P_{e^-} = 0.8, P_{e^+} = 0.0$ :
  - $M_\chi = 180.7 \pm 1.3~{
    m GeV}$

• 
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$\textit{M}_{\chi} = 180.5 \pm 0.6 ~\rm{GeV}$$

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## Benefits Of Beam Polarisation

#### Benefits

- 80% Polarisation of the e<sup>-</sup> beam increases the sensitivity by a factor of 2 to 3
- Additionally 60% e<sup>+</sup> polarisation gives another increase in sensitivity by a factor of 2 as well as in the mass resolution (compared to e<sup>-</sup> polarisation)

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |

# Summary

- previous analysis (c.f. LCWS '07) is being upgraded to more realistic detector simulation
- reconstruction improvements
- Good chance of model-independent WIMP detection at ILC
- Beam polarisation enhances significantly the reach as well as the mass resolution
- mass resolutions down to 0.6 GeV (c.f. SUSY LSP mass from cascade decays: about 0.1 GeV)
- Additional e<sup>+</sup> polarisation increases the sensitivity by the same factor as e<sup>-</sup> polarisation alone
- first look into new detector model & reconstruction upgrades promisses improved results

| Introduction | Analysis | Sensitivity | Mass Resolution | Summary And Outlook |
|--------------|----------|-------------|-----------------|---------------------|
|              |          |             |                 |                     |
|              |          |             |                 |                     |
|              |          |             |                 |                     |
|              |          |             |                 |                     |

## Outlook

- Repeat with the ILD detector parameters for the Letter of Intent (due March 09)
- Include reducible (experimental) backgrounds
- Include machine backgrounds (pairs!)
- Have a look at SUSY scenarios in which radiative Neutralino production is the only open SUSY channel at the ILC