Tensor reduction of one-loop pentagons and hexagons

Theodoros Diakonidis
(DESY, ZEUTHEN)

Th. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, J.B. Tausk

Based on [arXiv:hep-ph/0807.2984]

Sponsored by EU-program HEPTOOLS

Motivation and goals

- Recent years have seen the emergence of first results for massive $2 \rightarrow 4$ scattering processes
- One of the challenges posed is the need to compute one-loop tensor integrals with up to 6 legs
- To provide compact analytic formulas for the complete reduction of tensor pentagons and hexagons to scalar master integrals, free of leading inverse Gram determinants
Starting from results from:
J.Fleischer, F.Jegerlehner, and O.V. Tarasov, Nucl. Phys. B566
(2000) 423-440
- Producing public code

Notations

We consider one-loop, (N)-point tensor integrals of rank R in ddimensional space-time,

$$
J_{\mu_{1}, \mu_{R}}^{(N)}\left(d ; v_{1} \ldots v_{N}\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{k_{\mu_{1}} \ldots k_{\mu_{R}}}{D_{1}^{1} \ldots D_{N}^{D_{N}^{N}}}
$$

with propagator denominators:

$$
D_{j}=\left(k-q_{j}\right)^{2}-m_{j}^{2}+i \varepsilon
$$

We decompose these tensor integrals into a basis of symmetric tensors constructed from g and the momenta q_{j}

$$
\begin{aligned}
& J_{\mu_{1} \ldots \mu_{R}}^{(N)}\left(d ; v_{1} \ldots v_{N}\right)=\sum_{\lambda, \kappa_{1}, \ldots \kappa_{N}} \operatorname{coeff} \times\left\{[g]^{\lambda}\left[q_{1}\right]^{\kappa_{1}} \ldots\left[q_{N}\right]^{\kappa_{N}}\right\}_{\mu_{1} \ldots \mu_{R}} \\
& \quad \times J^{(N)}\left(d+2(R-\lambda) ; v_{1}+\kappa_{1}, \ldots, v_{N}+\kappa_{N}\right): \text { scalar }
\end{aligned}
$$

A.I. Davydychev, Phys. Lett. B 263 (1991) 107

- The next step is the usage of recurrence relations to reduce the scalar coefficients $J^{(N)}$ appearing in the decomposition to a set of master integrals
- Combining integration by parts identities, with relations connecting integrals in different space-time dimensions, one obtains the following basic recurrence relations:

$$
\begin{aligned}
& 0_{N} v_{j} j^{+} J^{(N)}(d+2)=\left[-\binom{j}{0}_{N}+\sum_{k=1}^{n}\binom{j}{k} k^{-}\right] J^{(N)}(d), \\
& \left(d-\sum_{i=1}^{n} v_{i}+1\right)\left(O_{N} J^{(N)}(d+2)=\left[\binom{0}{0}_{N}-\sum_{k=1}^{n}\binom{0}{k}_{N} k^{-}\right] J^{(N)}(d)\right. \\
& \binom{0}{0}_{N} v_{j} j^{+} J^{(N)}(d)=\sum_{k=1}^{n}\binom{0 j}{0 k}_{N} \times\left[d-\sum_{i=1}^{n} v_{i}\left(k^{-} i^{+}+1\right)\right] J^{(N)}(d)
\end{aligned}
$$

- Where the operator $j^{ \pm}$acts by shifting the index v_{j} by ± 1
O.V. Tarasov, Phys. Rev. D 54 (1996) 6479

Notations continue ...

Where:
()$_{N}=\left|\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & Y_{11} & Y_{12} & \ldots & Y_{1 N} \\ 1 & Y_{12} & Y_{22} & \ldots & Y_{2 N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & Y_{1 N} & Y_{2 N} & \ldots & Y_{N N}\end{array}\right|=-2^{N-1} \times\left|\begin{array}{ccccc}q_{1} \cdot q_{1} & q_{1} \cdot q_{2} & \cdots & q_{1} \cdot q_{N-1} \\ q_{2} \cdot q_{1} & q_{2} \cdot q_{2} & \cdots & q_{2} \cdot q_{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ q_{N-1} \cdot q_{1} & q_{N-1} \cdot q_{2} & \cdots & q_{N-1} \cdot q_{N-1}\end{array}\right|$

An $(N+1) \times(N+1)$ matrix known as the modified Cayley determinant (D.B. Melrose, Nuovo Cim. 40 (1965) 181)
with coefficients:

$$
Y_{i j}=-\left(q_{i}-q_{j}\right)^{2}+m_{i}^{2}+m_{j}^{2}, \quad(i, j=1 \ldots N)
$$

Notations continue ...

Diagrams

Pentagons

We will restrict to a third rank tensor ($I_{5}^{\mu \nu \lambda}$) with indices:

$$
\begin{gathered}
v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=1 \\
J_{\mu_{1} \ldots \mu_{R}}^{(N)}\left(d ; v_{1} \ldots v_{N}\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{k_{\mu_{1}} \ldots k_{\mu_{R}}}{D_{1}^{v_{1}} \ldots D_{N}^{v_{N}}}
\end{gathered}
$$

(Assuming loop momentum k has been shifted so $q_{N}=0$)

Applying Davydychev's equation gives integrals in $\mathrm{d}+4$ and $\mathrm{d}+6$ dimensions and with increased indices.

They are reduced back to the generic dimension $d=4-2 \varepsilon$ by the first 2 recurrence relations:

$$
\begin{gathered}
0_{N} v_{j} j^{+} J^{(N)}(d+2)=\left[-\binom{j}{0}_{N}+\sum_{k=1}^{n}\binom{j}{k}_{N} k^{-}\right] J^{(N)}(d), \\
\left(d-\sum_{i=1}^{n} v_{i}+1\right) 0_{N} J^{(N)}(d+2)=\left[\binom{0}{0}_{N}-\sum_{k=1}^{n}\binom{0}{k}_{N} k^{-}\right] J^{(N)}(d)
\end{gathered}
$$

It involves division by a Gram determinant ()$_{N}$ at each step

- The leading Gram determinant ()$_{5}$ can be avoided if one is only interested in contractions of the tensor integral with 4dimensional objects.
- It is achieved by using the following decomposition of the metric tensor:

$$
g^{\mu \nu}=2 \sum_{i, j=1}^{N-1} \frac{\binom{i}{j}}{\left(_{N}\right.} q_{i}^{\mu} q_{j}^{\nu}
$$

- We actually rearrange things until we see the combination above and then we replace

After further simplifications we obtain:

$$
I_{5}^{\mu \nu \lambda}=\sum_{i, j, k=1}^{4} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} \mathrm{E}_{i j k}+\sum_{k=1}^{4} g^{[\mu \nu} q_{k}^{\lambda]} \mathrm{E}_{00 k}
$$

With scalar coefficients defined by:

Where s, t, u are the internal lines that are cut from the initial pentagon to produce the relative, box (s), triangle (s,t), or bubble (s,t,u).
$I_{4}^{s}, I_{3}^{s t}, I_{2}^{\text {stu }}$ are scalar master integrals
The remaining coefficients are defined as:

$$
\begin{aligned}
& S_{i j k}^{4, s}=\frac{1}{3\binom{0}{0}_{5}\binom{s}{s}_{5}^{2}} \times \\
& \left\{-\binom{0 s}{0 k}_{5}\left[\binom{0 s}{i s}_{5}\binom{0 s}{j s}_{5}+\binom{i s}{j s}_{5}\binom{0 s}{0 s}_{5}\right]\right. \\
& \left.+\binom{0 s}{0 s}_{5}\left[\binom{0 i}{s k}_{5}\binom{0 s}{j s}_{5}+\binom{0 j}{s k}_{5}\binom{0 s}{i s}_{5}\right]\right\} \\
& +(i \leftrightarrow k)+(j \leftrightarrow k) \\
& S_{i j k}^{2, s t u}=-\frac{1}{3\binom{0}{0}_{5}\binom{s}{s}_{5}\binom{s t}{s t}_{5}} \times \\
& \left\{\binom{0 s}{0 k}_{5}\binom{t s}{j s}_{5}\binom{u s t}{i s t}_{5}-\frac{1}{2}\left[\binom{0 j}{s k}_{5}\binom{u s t}{i s t}_{5}\right.\right. \\
& \left.\left.+\binom{0 i}{s k}_{5}\binom{u s t}{j s t}_{5}\right]\binom{t s}{0 s}_{5}\right\} \\
& +(i \leftrightarrow k)+(j \leftrightarrow k) \text {, } \\
& E_{00 j}=\frac{1}{6\binom{0}{0}_{5}}\left\{-\sum_{s=1}^{5} \frac{1}{\binom{s}{s}_{5}^{2}}\right. \\
& \times\left[3\binom{s}{0}_{5}\binom{0 s}{j s}_{5}-\binom{s}{j}_{5}\binom{0 s}{0 s}_{5}\right]\binom{0 s}{0 s}_{5} I_{4}^{s} \\
& +\sum_{s, t=1}^{5} \frac{1}{\binom{s}{s}_{5}^{2}} \\
& \left.\times\left[3\binom{s}{0}_{5}\binom{0 s}{j s}_{5}-\binom{s}{j}_{5} \frac{\binom{t s}{0 s}_{5}^{2}}{(s t} \begin{array}{c}
s t
\end{array}\right)_{5}\right]\binom{t s}{0 s}_{5} I_{3}^{s t} \\
& \left.-\sum_{s, t, u=1}^{5}\binom{s}{j}_{5} \frac{\binom{u s t}{0 s t}_{5}}{\binom{s}{s}_{5}\binom{s t}{s t}_{5}}\binom{t s}{0 s}_{5} I_{2}^{s t u}\right\} .
\end{aligned}
$$

- This decomposition is similar to the one found in the:
A.Denner and S. Dittmaier, Nucl. Phys. B 658 (2003) 175
where the coefficients $E_{i j k}$ and $E_{00 j}$ are expressed in tensor 4point functions
- Detailed discussion on second rank pentagon can be found in J.Fleischer, J.Gluza, K.Kajda and T.Riemann, Acta Phys. Polon. B 38 (2007) 3529

Hexagons

If the external momenta of a hexagon are 4-dimensional
Due to ()$_{6}=0$:

$$
1=\sum_{j=1}^{6} \frac{\left(\begin{array}{l}
j
\end{array}\right)_{6}}{\binom{0}{0}_{6}} D_{j}
$$

Any hexagon integral can be reduced to pentagons (e.g.):

$$
\text { scalar }: I_{6}=\sum_{r=1}^{6} \frac{\binom{0}{r}_{6}}{\binom{0}{0}_{6}^{r}} I_{5}
$$

D.B. Melrose, Nuovo Cim. 40 (1965) 181

It was also noticed that a reduction directly to tensor pentagons of rank R-1 is also possible:

Where

$$
\begin{gathered}
I_{6}^{\mu_{1}, \ldots \mu_{R}}=\sum_{r=1}^{6} u_{r}^{\mu_{1}} I_{5}^{\mu_{2} \ldots \mu_{R}, r} \\
u_{r}^{\mu} \equiv-\frac{1}{\binom{0}{0}_{6}} \sum_{i=1}^{5}\binom{0 i}{0 r}_{6} q_{i}^{\mu}
\end{gathered}
$$

J. Fleischer, F. Jegerlehner, and O.V. Tarasov, Nucl. Phys. B566 (2000) 423
See also:
T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, JHEP 0510 (2005) 015
A more general proof can be found in:
A. Denner and S. Dittmaier, Nucl. Phys. B 734 (2006) 62

Substituting our reduction formulas for tensor pentagons, we can express tensor hexagons in terms of scalar master integrals

Numerical results (Fortran)

- For five and six point tensor integrals, we have a Fortran implementation package (Th. Diakonidis \& B. Tausk)

The present implementation includes:

- Six point functions up to rank four (Hexagon.F)
- Five point functions up to rank three (Pentagon.F)

It is able to output the full result for:

- Six or five point tensor integral
- A specific coefficient for a given rank
- The code so far uses:

Looptools 2.2 (by Thomas Hahn) (calculates only the finite part)
QCDLoop (R.K. Ellis and G. Zanderighi) (Finite part and $1 / \varepsilon$ and $1 / \varepsilon^{2}$ terms)

To calculate the scalar master integrals after the reduction
(The first is restricted to massive cases but the second can be implemented for massless cases too)

- It can be adapted to any Fortran package for 1,2,3,4 point functions
- A lot of cross checks have been done so far (shown after) and we also cross checked the results with an independent code by Peter Uwer

Some sample results

For the randomly chosen phase space point given by:

```
p}=(0.21774554E+03,\quad0,\quad0,\quad0.21774554E+03
p}=(0.21774554E+03,\quad0,\quad0,\quad-0.21774554E+03
p}=(-0.20369415E+03,\quad-0.47579512E+02,\quad0.42126823E+02,\quad0.84097181E+02
p
p5 = (-0.68463308E+01, 0.53063195E+01, 0.29698267E+01, -0.31456871E+01)
p6 = (-0.15878244E+02, -0.12942769E+02,\quad0.15953850E+01, 0.90585932E+01)
        m
```

Results for scalar, vector and $2^{\text {nd }}$ rank six point functions:

		RESULTS	
		REAL	IM
		F_{0}	
		-0.223393E-18	-0.396728E-19
μ		F^{μ}	
0		$0.192487 \mathrm{E}-17$	$0.972635 \mathrm{E}-17$
1		-0.363320E-17	-0.11940E-17
2		$0.365514 \mathrm{E}-17$	$0.106928 \mathrm{E}-17$
3		$0.239793 \mathrm{E}-16$	$0.341928 \mathrm{E}-17$
μ	ν	$F^{\mu \nu}$	
0	0	$0.599459 \mathrm{E}-14$	-0.114601E-14
0	1	$0.323869 \mathrm{E}-15$	$0.423754 \mathrm{E}-15$
0	2	-0.294252E-15	-0.375481E-15
0	3	-0.255450E-14	-0.195640E-14
1	1	-0.164562E-14	-0.993796E-16
1	2	$0.920944 \mathrm{E}-16$	$0.706487 \mathrm{E}-17$
1	3	$0.347694 \mathrm{E}-15$	-0.127190E-16
2	2	-0.163339E-14	-0.994148E-16
2	3	-0.341773E-15	$0.818678 \mathrm{E}-17$
3	3	-0.413909E-14	$0.670676 \mathrm{E}-15$

$3^{\text {rd }}$ rank 6 point functions

			REAL	IM
μ	ν	λ	$F^{\mu \nu \lambda}$	
0	0	0	$-0.227754 \mathrm{D}-11$	$-0.267244 \mathrm{D}-12$
0	0	1	$0.140271 \mathrm{D}-13$	$-0.119448 \mathrm{D}-12$
0	0	2	$-0.201270 \mathrm{D}-13$	$0.101968 \mathrm{D}-12$
0	0	3	$0.102976 \mathrm{D}-12$	$0.624467 \mathrm{D}-12$
0	1	1	$0.183904 \mathrm{D}-12$	$0.142429 \mathrm{D}-12$
0	1	2	$-0.131028 \mathrm{D}-13$	$-0.610343 \mathrm{D}-14$
0	1	3	$-0.543316 \mathrm{D}-13$	$-0.158809 \mathrm{D}-13$
0	2	2	$0.181352 \mathrm{D}-12$	$0.141686 \mathrm{D}-12$
0	2	3	$0.506408 \mathrm{D}-13$	$0.163568 \mathrm{D}-13$
0	3	3	$0.600542 \mathrm{D}-12$	$0.130733 \mathrm{D}-12$
1	1	1	$-0.563539 \mathrm{D}-13$	$0.178403 \mathrm{D}-13$
1	1	2	$0.210641 \mathrm{D}-13$	$-0.584990 \mathrm{D}-14$
1	1	3	$0.120482 \mathrm{D}-12$	$-0.574688 \mathrm{D}-13$
1	2	2	$-0.201182 \mathrm{D}-13$	$0.620591 \mathrm{D}-14$
1	2	3	$-0.686164 \mathrm{D}-14$	$0.205457 \mathrm{D}-14$
1	3	3	$-0.447329 \mathrm{D}-13$	$0.193180 \mathrm{D}-13$
2	2	2	$0.582201 \mathrm{D}-13$	$-0.163889 \mathrm{D}-13$
2	2	3	$0.119659 \mathrm{D}-12$	$-0.570084 \mathrm{D}-13$
2	3	3	$0.457464 \mathrm{D}-13$	$-0.181141 \mathrm{D}-13$
3	3	3	$0.557081 \mathrm{D}-12$	$-0.374359 \mathrm{D}-12$

$4^{\text {th }}$ rank 6-point

			REAL	IM	
μ	ν	λ	ρ	$F^{\mu \nu \lambda \rho}$	
0	0	0	0	$0.666615 \mathrm{D}-09$	$0.247562 \mathrm{D}-09$
0	0	0	1	$-0.200049 \mathrm{D}-10$	$0.294036 \mathrm{D}-10$
0	0	0	2	$0.200975 \mathrm{D}-10$	$-0.237333 \mathrm{D}-10$
0	0	0	3	$0.645477 \mathrm{D}-10$	$-0.162236 \mathrm{D}-09$
0	0	1	1	$-0.116956 \mathrm{D}-10$	$-0.516760 \mathrm{D}-10$
0	0	1	2	$0.160357 \mathrm{D}-11$	$0.222284 \mathrm{D}-11$
0	0	1	3	$0.792692 \mathrm{D}-11$	$0.729502 \mathrm{D}-11$
0	0	2	2	$-0.111838 \mathrm{D}-10$	$-0.513133 \mathrm{D}-10$
0	0	2	3	$-0.681086 \mathrm{D}-11$	$-0.708933 \mathrm{D}-11$
0	0	3	3	$-0.804454 \mathrm{D}-10$	$-0.801909 \mathrm{D}-10$
0	1	1	1	$0.100498 \mathrm{D}-10$	$-0.151735 \mathrm{D}-13$
0	1	1	2	$-0.348984 \mathrm{D}-11$	$-0.195436 \mathrm{D}-12$
0	1	1	3	$-0.211111 \mathrm{D}-10$	$0.295212 \mathrm{D}-11$
0	1	2	2	$0.357455 \mathrm{D}-11$	$0.662809 \mathrm{D}-14$
0	1	2	3	$0.121595 \mathrm{D}-11$	$-0.807388 \mathrm{D}-13$
0	1	3	3	$0.825803 \mathrm{D}-11$	$-0.142086 \mathrm{D}-11$
0	2	2	2	$-0.958961 \mathrm{D}-11$	$-0.585948 \mathrm{D}-12$

				REAL	IM
μ	ν	λ	ρ	$F^{\mu \nu \lambda \rho}$	
0	2	2	3	$-0.209232 \mathrm{D}-10$	$0.289031 \mathrm{D}-11$
0	2	3	3	$-0.802359 \mathrm{D}-11$	$0.994701 \mathrm{D}-12$
0	3	3	3	$-0.102576 \mathrm{D}-09$	$0.378476 \mathrm{D}-10$
1	1	1	1	$-0.246426 \mathrm{D}-10$	$0.276326 \mathrm{D}-10$
1	1	1	2	$0.915670 \mathrm{D}-12$	$-0.660629 \mathrm{D}-12$
1	1	1	3	$0.303529 \mathrm{D}-11$	$-0.287480 \mathrm{D}-11$
1	1	2	2	$-0.822697 \mathrm{D}-11$	$0.919635 \mathrm{D}-11$
1	1	2	3	$-0.116294 \mathrm{D}-11$	$0.100024 \mathrm{D}-11$
1	1	3	3	$-0.146918 \mathrm{D}-10$	$0.183799 \mathrm{D}-10$
1	2	2	2	$0.908296 \mathrm{D}-12$	$-0.654735 \mathrm{D}-12$
1	2	2	3	$0.109510 \mathrm{D}-11$	$-0.100875 \mathrm{D}-11$
1	2	3	3	$0.717342 \mathrm{D}-12$	$-0.557293 \mathrm{D}-12$
1	3	3	3	$0.450661 \mathrm{D}-11$	$-0.485065 \mathrm{D}-11$
2	2	2	2	$-0.245154 \mathrm{D}-10$	$0.274313 \mathrm{D}-10$
2	2	2	3	$-0.318500 \mathrm{D}-11$	$0.279750 \mathrm{D}-11$
2	2	3	3	$-0.146317 \mathrm{D}-10$	$0.182912 \mathrm{D}-10$
2	3	3	3	$-0.477335 \mathrm{D}-11$	$0.477368 \mathrm{D}-11$
3	3	3	3	$-0.730168 \mathrm{D}-10$	$0.112865 \mathrm{D}-09$

More results (massless case)

For the phase space point given by:

```
p1 =(1, 0, 0, 0)
p2 =(-0.19178191,-0.12741180,-0.0826:2477,-0.11713105)
p3 =(-0.33662712, 0.06648281, 0.31893785, 0.08471424)
p4 =(-0.21604814, 0.20363139,-0.04415762,-0.05710657)
p5 =-(p1+p2+p3+p4)
    M1=0, M2=0, M3=0, M4=0, M5=0
```

Golem95: T.Binoth, J.-Ph.Guillet, G. Heinrich, E.Pilon, T.Reiter [arXiv:hep-ph/0810.0992]

Comparisons with golem 95

	ϵ^{0}	$1 / \epsilon$	$1 / \epsilon^{2}$
E_{0}	$(202.168496,3211.04072)$	$(1022.10601,972.027061)$	$(309.405823,0)$
E_{3}	$(-264.996441,303.068452)$	$(96.4696846,149.228472)$	$(47.5008979,0)$
E_{44}	$(1780.58042,2914.50734)$	$(927.71650,568.572069)$	$(180.982111,0)$
E_{00}	$(9.56327810,0)$	$(0,0)$	$(0,0)$
E_{555}	$(1035.29689,1422.01085)$	$(452.640112,254.226520)$	$(80.9228146,0)$
E_{001}	$(0.84742102,0)$	$(0,0)$	$(0,0)$

Complete agreement to all the numbers shown
(QCDLoop was used for the scalar master integrals)

Numerical results (Mathematica)

Mathematica package hexagon.m (by K. Kajda)

The present implementation includes:

- Six point functions up to rank four
- Five point functions up to rank three

It is able to output the full result for:

- Six or five point tensor integral
- A specific coefficient for a given rank
- A list of all coefficients of a given rank

More about the programs

- They provide coefficients of Lorentz-covariant tensors, and work in a basis of $g^{\mu \nu}$ and internal momenta q_{i}

$$
q_{0}=0, \quad q_{n}=\sum_{i=1}^{n} p_{i}
$$

- In terms of these coefficients, the tensor decomposition of pentagons E and hexagons F reads:

$$
\begin{aligned}
E^{\mu}= & \sum_{i=1}^{4} q_{i}^{\mu} E_{i}, \\
E^{\mu \nu}= & \sum_{i, j=1}^{4} q_{i}^{\mu} q_{i}^{\nu} E_{i j}+g^{\mu \nu} E_{00} \\
E^{\mu \nu \lambda}= & \sum_{i, j, k=1}^{4} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} E_{i j k}+\sum_{i=1}^{4} g^{[\mu \nu} q_{i}^{\lambda]} E_{00 i}, \\
F^{\mu}= & \sum_{i=1}^{5} q_{i}^{\mu} F_{i}, \\
F^{\mu \nu}= & \sum_{i, j=1}^{5} q_{i}^{\mu} q_{i}^{\nu} F_{i j}, \\
F^{\mu \nu \lambda}= & \sum_{i, j, k=1}^{5} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} F_{i j k}+\sum_{i=1}^{5} g^{\mu \nu} q_{i}^{\lambda} F_{00 i}, \\
F^{\mu \nu \lambda \rho}= & \sum_{i, j, k, l=1}^{5} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} q_{l}^{\rho} F_{i j k l} \\
& +\sum_{i, j=1}^{5} q_{i}^{\mu} q_{j}^{[\nu} g^{\lambda \rho]} F_{00 i j}
\end{aligned}
$$

Functions used in the package

Six point functions	Five point functions		
RedF0 \quad scalar 6pt integral	RedE0	scalar 5pt integral	
RedF1	vector 6pt integral	RedE1	vector 5pt integral
RedF2	rank two 6pt tensor integral	RedE2	rank two 5pt tensor integral
RedF3	rank three 6pt tensor integral	RedE3	rank three 5pt tensor integral
RedF4	rank four 6pt tensor integral		
RedFcoef	coefficient of given 6pt	RedEcoef	coefficient of given 5pt
RedFget all coefficients of given 6pt	RedEget all coefficients of given 5pt		
The basic functions have the following arguments, here $s_{i j}=\left(p_{i}+p_{j}\right)^{2}, s_{i j k}=\left(p_{i}+p_{j}+p_{k}\right)^{2}:$			
RedFO $\left[p_{1}^{2}, \ldots, p_{6}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, s_{345}, m_{1}^{2}, \ldots, m_{6}^{2}\right]$			
RedEO $\left[p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right]$			

Numerical cross checks

1. Comparison with AMBRE \& MB.m $p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\lambda} E_{\mu \nu \lambda}$

Point:
$p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{5}^{2}=1, p_{4}^{2}=0, m_{1}^{2}=m_{3}^{2}=0, m_{2}^{2}=m_{4}^{2}=m_{5}^{2}=1$,
$s_{12}=-3, s_{23}=-6, s_{34}=-5, s_{45}=-7, s_{15}=-2$
In: RedE3[$\left.p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\}$
Out: 0.218741
2. Comparison with Sector Decomposition : F_{0}

Point:

$p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=p_{5}^{2}=p_{6}^{2}=-1, m_{1}^{2}=m_{2}^{2}=m_{3}^{2}=m_{4}^{2}=m_{5}^{2}=m_{6}^{2}=1$,
$s_{12}=s_{23}=s_{34}=s_{45}=s_{56}=s_{16}=s_{123}=s_{234}=-1, s_{345}=-5 / 2$
$\overline{\text { In: }}$ RedF0 $\left.p_{1}^{2}, \ldots, p_{6}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, s_{345}, m_{1}^{2}, \ldots, m_{6}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0\}$
Out: 0.013526

1. J. Gluza, K. Kajda and T. Riemann, Comput. Phys. Comm. 177 (2007) 879 M. Czakon, Comput. Phys. Commun. 175 (2006) 559
2. C. Bogner and S. Weinzierl, Comput. Phys. Commun. 178 (2008) 596 T. Binoth, G. Heinrich and N. Kauer, Nucl. Phys. B 654 (2003) 277

Numerical cross checks

3. Comparison with LoopTools : $E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{34}, E_{123}, E_{002}$

Point:

$p_{1}^{2}=p_{2}^{2}=0, p_{3}^{2}=p_{5}^{2}=49 / 256, p_{4}^{2}=9 / 100, m_{1}^{2}=m_{2}^{2}=m_{3}^{2}=49 / 256, m_{4}^{2}=m_{5}^{2}=81 / 1600$,
$s_{12}=4, s_{23}=-1 / 5, s_{34}=1 / 5, s_{45}=3 / 10, s_{15}=-1 / 2$
In: RedE0 $\left[p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / . \mathrm{D} 4->$ D0
Out: 41.3403-45.9721*I
In: RedEget[rank1 $, p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}$]/.D4->D0
Out: ee1 $=-2.38605+5.27599 * I$, ee2 $=-5.80875+0.597891 * I$, ee3 $=-14.4931+20.8149 * \mathrm{I}$, ee4 $=-11.3362+18.1593 * \mathrm{I}$
In: RedEcoef $\left[\right.$ ee $34, p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}$]/. \{D4->D0,C3->C0\}
Out: $7.1964+3.10115 * \mathrm{I}$
In: RedEcoef[ee123 $\left., p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\}$
Out:-0.149527-0.31059*I
In: RedEcoef [ee002 $\left., p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\}$ Out: 0.154517 - 0.387727*I
3. T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153
T. Hahn and M. Rauch, Nucl. Phys. Proc. Suppl. 157 (2006) 236

- In all these checks we used Looptools 2.2 to calculate the finite parts of the scalar four, three, two point functions which appear after the reduction
- In general, the functions defined directly in Looptools may not be sufficient to cover the whole kinematic phase space (obtained from the reduction of six point functions)
- New libraries should be supplemented to the reduction package

Conclusions

- An analytical reduction of one-loop tensor integrals with 5 or 6 legs down to scalar master integrals has been described
- Result for the tensor pentagon rank 3 is shown explicitly
- Reduction formulas have been implemented in a Mathematica and a Fortran program
- Mathematica program publicly available at:
http://www-zeuthen.desy.de/theory/research/CAS.html
- The determinants shown above are signed minors of the modified Cayley determinant, constructed by deleting m rows and m columns from ()$_{N}$ and multiplying with a sign factor.
- Denoted by:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
j_{1} & j_{2} & \ldots & j_{m} \\
k_{1} & k_{2} & \ldots & k_{m}
\end{array}\right)_{N} \equiv(-1)^{\sum_{1}^{\left(j_{i}+k_{i}\right)}} \\
& \operatorname{sgn}_{\{j\}} \operatorname{sgn}_{\{k\}} \left\lvert\, \begin{array}{c}
\text { rows } j_{1} \ldots j_{m} \text { deleted } \\
\text { columns } k_{1} \ldots k_{m} \text { deleted }
\end{array}\right.
\end{aligned}
$$

- Where $\operatorname{sgn}_{\{j\}}$ and $\operatorname{sgn}_{\{k\}}$ are the signs of permutations that sort the deleted rows $j_{1} \ldots j_{m}$ and columns $k_{1} \ldots k_{m}$ into ascending order

