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Representing Feynman Diagrams
It would be very useful to have a general 
means of representing a Feynman diagram 
with an arbitrary number of loops and legs.
Reduction techniques to represent a given 
diagram in terms of a class of more 
elementary integrals are required in 
computations. 
Since the diagrams typically diverge in 4 
dimensions, an expansion must be 
developed in a small parameter about d = 4.
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Hypergeometric
 

Function Approach
One of the most powerful representations 
of Feynman diagrams is in terms of 
hypergeometric functions.

Much work has been done on finding the 
representation of various diagrams in 
terms of HG functions, and finding 
recursion relations among them which can 
be the basis for a reduction algorithm.
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Hypergeometric
 

Functions and 
Feynman Diagrams

Regge proposed (45 years ago) that Feynman 
diagrams could be represented in terms of HG 
functions. 

The singularities of this function are coincide with 
the surface of Landau singularities of the Feynman 
diagram.

This representation has an advantage of efficiency 
– for example, the 4-point massive scalar box 
diagram may be expressed as 192 dilogs – or a 
single HG function of several variables. This 
helps to cancel spurious singularities.

[D.S. Kershaw, Phys. Rev. D8 (1973) 2708]
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Generalized Hypergeometric
 

Functions
The generalized HG function p Fq has expansion

with (a)j = Γ(a + j)/Γ(a) the “Pochhammer symbol” 
and the b-parameters cannot be negative integers.

The “original” HG function is the Gauss HG function,      
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Hypergeometric
 

Functions and 
Feynman Diagrams

The HG representation for one loop N-point 
functions was obtained in series form by Kershaw 
[above] and others, and the associated differential 
equation was constructed by Barucchi and 
Ponzano. [J. Math. Phys. 14 (1973) 396]

Functions appearing in one-loop N-point functions 
include Appell functions and Lauricella functions. 

See our recent preprint for a references to some 
of the historic papers and review articles: 
[Kalmykov, Kniehl, Ward, Yost, arXiv: 0810.3238]
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Examples:  Vertex Diagrams
Our recent paper contains a catalog of one-loop 

vertex diagrams.  For example, 
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Feynman Diagram Computation
The most common methods for computing 
Feynman diagrams are based on algebraic 
relations among diagrams with different 
numerators but common denominators, with 
different powers of denominators, or in 
different space-time dimensions. 

These algebraic relations are the basis for 
reduction algorithms, which reduce a general 
diagram in some class to a restricted set of 
master integrals which may be implemented 
numerically.
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Feynman Diagram Computation
HG functions can be used in a similar manner in 
computations.
The algebraic and differential relations among HG 
functions with shifted arguments can be used to 
construct a reduction algorithm.
For example, all one-loop N-point diagrams can be 
represented in terms of HG functions of N−1
variables, and can be reduced to a set of master 
integrals which are in turn related by a difference 
equation in the dimension d.

[Fleischer, Jegerlehner, Tarasov, Nucl. Phys. B 672 (2003) 303]
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Epsilon Expansions
The HG function can be expanded in powers of the 

parameter ε. The terms in this expansion multiply 
poles 1/εn from UV and IR divergences.  Higher- 
order terms are needed in the expansion for 
higher-loop graphs. To be useful, the coefficients 
of the ε

 
expansion are needed analytically.

This means that a HG function, e.g. ,must 
be expanded about its parameters, so that 

, resulting in a Laurent series
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Three Hypergeometric
 

Approaches
Three approaches have been taken toward 

HG representations of Feynman diagrams:

1. Integral representations
2. Series representations
3. Differential representation

Let’s consider briefly what each of these 
mean and what has been done with them.
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Integral Representation
Integrals leading to HG functions include 

Euler integrals

with the P’s a set of Laurent polynomials,
and Mellin-Barnes integrals

with a, b, c, d real.
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Integral Representation
The Euler integral representation has been used to 

obain the all-order ε
 

expansion of Gauss HG 
functions in terms of Nielsen polylogarithms

Recently, we have derived similar results using the 
differential equation approach, and will discuss 
them later in the talk.
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Series Representation
A Laurent series in r variables

is hypergeometric if for each i, the ratio
is a rational function in the 

multi-index   , with                          .
This is actually a particular type of HG series 

called a Horn series.  
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Series Representation
The Horn-Type HG series can be shown to 

satisfy a system of differential equations 
of the form

with polynomials Pj , Qr satisfying
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Series Representation
The series approach has been studied much.  

Some useful implementations have 
appeared, which have been used in high- 
order calculations:

HypExp – Huber & Maître: all-orders 
expansion of HG functions about integer values 
of parameters in Mathematica

XSummer – Moch & Uwer: expansions of 
transcendental functions and symbolic 
summation in FORM.

In both cases, the nested sum 
representation plays an important role.
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Differential Representation
A differential representation is based on the 

differential (or difference) relations among 
a class of HG functions. 

For example, a HG function of the form 

satisfies

where W is an rxm matrix and    is its jth row.
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Differential Representation
Davydychev began applying the differential 

approach to constructing the ε
 

expansion                  
[Phys. Rev. D61 (2000) 087701]

The key to this approach is that HG functions satisfy 
certain differential equations, e.g.

A differential equation for the coefficients of the ε
 expansion can be derived directly from this 

equation without reference to the series or 
integral representations, by expanding […] in ε.
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Differential Representation
Constructing an iterated solution has an 

advantage, in principle, over the series 
approach: 

Each term in the ε expansion is related 
to previously derived terms. 

There is no need to work with an 
increasingly large collection of 
independent sums at each new order.
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Differential Representation
We have been considering the approach of 

constructing an iterated solution to the 
differential equation satisfied by the HG function.

I will be summarizing some recent results on 
constructing all-order ε

 
expansions for certain 

classes of HG functions in papers by Kalmykov, 
Ward, Yost: 

JHEP 0702 (2007) 040    hep-th/0612240
Gauss HG functions, Integer, ½-Integer parameters
JHEP 0711 (2007) 009    arXiv:0707.3654
Generalized HG functions, Integer parameters
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Transcendental Functions for Epsilon 
Expansions
The ε

 
expansion can introduce new transcendental 

functions that must be implemented in the calculation.  
One of the goals of our work has been to classify the 
functions needed to construct an all-order e expansion 
of certain classes of HG functions.

In particular, the  multiple polylogarithms

have proven useful for representing the coefficients of 
the ε

 
expansions of a large class of HG functions.
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The Case of Integer Parameters
In the case when the parameters A, B, C are 
integers, the ε expansion may be written in terms 
of harmonic polylogarithms. 
[Remiddi and Vermaseren, Int. J. Mod. Phys. A15   (2000), 
725]

Harmonic polylogarithms are a special case  of 
multiple polylogarithms:

with vector m given by                                        .       
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Generalization
There is no proof that all the terms in the 
ε expansion can be represented in terms 
of only harmonic polylogarithms. 

There are, in fact, known examples that 
cannot be expressed in terms of harmonic 
polylogarithms with a simple argument.

For HG functions of the Gauss type, we 
have been able to prove a representation 
in terms of harmonic polylogarithms.
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Gauss Hypergeometric
 

Functions
Some Feynman diagrams giving rise to 

Gauss HG Functions include
one-loop propagator diagrams with 
arbitrary masses and momenta
two loop bubble diagrams with arbitrary 
masses
one-loop massless vertex diagrams with 
three nonzero external momenta.
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Theorem for Gauss HG Functions
We proved the following theorem:

The ε
 

expansion of a Gauss HG function 

with A, B, C integers or half-integers may be 
expressed in terms of harmonic polylogarithms 
with polynomial coefficients.  

In the process, we obtained a constructive 
procedure to calculate all terms in the expansion 
iteratively.
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Reduction Algorithm
The proof begins with the observation that any 

Gauss HG function  can be written as a linear 
combination of two others with parameters 
differing from the original parameters by an 
integer.
Specifically,

with a, b, c arbitrary parameters, I1 , I2 , I3 
integers, and P, Q1 , Q2 polynomials in the 
parameters and argument z.

( ) ( )zcbaFzcbaQ
dz
dzcbaQzIcIbIaFzcbaP ;;,),,,(),,,(;;,),,,( 12132112

⎭
⎬
⎫

⎩
⎨
⎧ +=+++



S.A. Yost   LCWS08 Chicago     Nov. 17, 2008 27

Reduction Algorithm
In this way, the given HG function can be 

reduced to a combination of five basis 
functions and their first derivatives:

In fact, it is known that only the first two are 
algebraically independent, so to prove the 
theorem, it is sufficient to consider only these 
two basis functions and show that they can be 
expressed as harmonic polylogarithms.

( ) ( )
( ) ( ) ( )zcbaFzcbaFzcbaF

zcbaFzcbaF
;;,,;;,,;1;,

,;;,,;1;,

2
1

2
1

2
1

122
1

2
1

122
1

12

2
1

1212

εεεεεεεεε
εεεεε

+++++++

++



S.A. Yost   LCWS08 Chicago     Nov. 17, 2008 28

Outline of Proof
The proof proceeds by writing a 
differential equation satisfied by the basis 
HG functions, and expanding the solution 
in powers of ε n. 
The coefficients of these powers can then 
be constructed iteratively and recognized 
as harmonic polylogarithms.
Obtaining the kth coefficient requires 
knowledge of the previous ones, in this 
construction.
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Gauss HG Functions: More General
The ε expansions of the functions
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[KWY, JHEP 2 (2007) 040 + M. Yu. Kalmykov, B. A. Kniehl,
arXiv:0807.0567 (Nucl. Phys. B)]

with I1 , I2 , I3 , p, q integers can be expressed in terms of
multiple polylogarithms whose arguments are qth roots
of unity and another variable that is an algebraic 
function of z, with coefficients that are ratios of 
polynomials. For integers or half-integers, harmonic 
polylogarithms are sufficient.
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Theorem for Generalized HG Functions
The ε expansions of the functions
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[KWY JHEP 10 (2007) 048, JHEP 11 (2007) 009 
+ M. Yu. Kalmykov, B. A. Kniehl, arXiv:0807.0567 (Nucl. Phys. B)]

with Ai , Bi , I, p, q integers can be expressed in terms of
multiple polylogarithms whose arguments are powers
of qth roots of unity and another variable that is an 
algebraic function of z, with coefficients that are ratios 
of polynomials.  



S.A. Yost   LCWS08 Chicago     Nov. 17, 2008 31

Outlook
This is just a very brief introduction to HG function 
approach to Feynman diagrams.  

One goal is to combine the results into a software 
package based on the differential equation 
representation.  Bytev, Kalmykov, and Kniehl have 
recently constructed a Mathematica implementation for 
the HG functions pFp−1, and F1, … F4 called HYPERDIRE.

Conversely, mathematicians have been using results 
motivated by Feynman diagrams to discover new 
relations among HG functions and related functions. 
This is a fertile area of interaction between 
mathematics and physics.
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