IMPROVED PREDICTION OF EVENT SHAPES FROM EFFECTIVE FIELD THEORY

Thomas Becher **Fermilab** LCWS '08, UIC, Nov. '08

OVERVIEW

- Event shape variables
 - Definition and experimental prospects at the ILC
- Improved theoretical prediction of thrust
 - NNLO fixed order
 - N³LL resummation by RG evolution in Soft Collinear Effective Theory (SCET) TB and M.D. Schwartz, JHEP 0807:034,2008
- Phenomenological results
 - Precision determination of α_s using LEP data.
 - Bound on light gluinos
 - Comparison with MC event generators

EVENT-SHAPEVARIABLES

- Parameterize geometric properties of energy and momentum flow in high energy collisions.
 - Inclusive observables: can be calculated in perturbation theory, hadronisation effects are suppressed at high energy.
- Canonical event shape is thrust T

THRUST T AND THRUST AXIS \vec{n} .

MEASUREMENTS OF THRUST

Based on 300'000 events. Similar precision by the other LEP experiments.

USE OF EVENT SHAPES

QCD studies

- convergence of perturbation theory, validation of shower MCs, studies of hadronisation effects
- Measurement of SM parameters
 - strong coupling constant α_s with $e^+e^- \rightarrow q\bar{q}$
 - top-mass with $e^+e^- \rightarrow t\bar{t} \rightarrow \text{Sonny Mantry's talk}$
- Discrimination against background
 - e.g. identification of energetic hadronic top-jets
- Search for new physics
 - e.g. search for light gluinos

EVENT SHAPES AT THE ILC

- At design luminosity, the ILC produces few hundred thousand $e^+e^- \rightarrow q\bar{q}$ events/year
 - Statistical uncertainties on extracted value of α_s is below 0.5%.
 - Systematic uncertainties are expected to be ~ 1%
 Schumm '96 & Truitt '01; Burrows '01
 - "contamination" from $e^+e^- \rightarrow (t\bar{t}, W^+W^-, ZZ)$
 - luminosity spectrum
 - Note: hadronisation effects scale as $\sim 1/E_{c.m.}$ and are thus smaller than at LEP
 - can be further constrained by varying $E_{c.m.}$

EVENT SHAPES AT NNLO

• After years of work, the NNLO calculation of $e^+e^- \rightarrow 3$ jets has been completed.

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich '07

- First time a subtraction scheme has been implemented at NNLO.
 - Real and virtual contributions are have collinear and soft divergences which cancel in the sum.
- Implemented in fixed order event generator. Can be used for NNLO evaluation of event shapes.

α_s from event shapes at Lep I

 $\alpha_s(M_Z^2) = 0.1240 \pm 0.0008 \,(\text{stat}) \pm 0.0010 \,(\text{exp}) \pm 0.0011 \,(\text{had}) \pm 0.0029 \,(\text{theo})$

RESUMMATION

and the set of the state of the set of the set

All-order formalism for resummation of thrust distribution

N³LL resummation

Comparison with fixed order

LOGARITHMICALLY ENHANCED CONTRIBUTIONS

• The LO thrust distribution has the form

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = \frac{2\alpha_s}{3\pi} \left[-\frac{3}{\tau} + 6 + 9\tau + \frac{(6\tau^2 - 6\tau + 4)}{(1 - \tau)\tau} \ln \frac{1 - 2\tau}{\tau} \right]$$
$$= \frac{2\alpha_s}{3\pi} \left[\frac{-4\ln\tau - 3}{\tau} + d_{regular}(\tau) \right]$$
singular terms
• Integral over the end-point is
$$R(\tau) = \int_0^\tau d\tau' \frac{1}{\sigma_0} \frac{d\sigma}{d\tau'} = \frac{2\alpha_s}{3\pi} \left[-2\ln^2\tau - 3\ln\tau + \dots \right]$$
Sudakov double logarithm

SINGULAR TERMS DOMINATE

- Singular terms are predicted (and later resummed to all orders) using Soft-Collinear Effective Theory.
- Regular terms (difference of blue and red) are added back after resummation.

RESUMMATION: THE TRADITIONAL WAY

- Logarithmically enhanced contributions lead to slow convergence of perturbation theory
- The leading logarithms $(LL) \alpha_s^n \ln^{2n} \tau$ and next-toleading log's $(NLL) \alpha_s^n \ln^{2n-1} \tau$ can be resummed using the "coherent branching algorithm"

NLL+NNLO calculation by T. Gehrmann, G. Luisoni and H. Stenzel, arXiv:0803.0695,

EFFECTIVE THEORY RESUMMATION

• Using Soft Collinear Effective Theory (SCET), one can show that for $\tau \rightarrow 0$ the rate factorizes as

$$\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} = H(Q^2,\mu) \int dM_1^2 \int dM_2^2 J(M_1^2,\mu) J(M_2^2,\mu) S_T(\tau Q - \frac{M_1^2 + M_2^2}{Q},\mu)$$

Fleming, Hoang, Mantry and Stewart '07 Schwartz '07 see also: Korchemsky '98; Berger, Kucs, Sterman '03

• Three relevant scales:

$$\begin{array}{c|c} Q^2 & \gg & M_1^2 \sim M_2^2 \sim \tau \ Q^2 & \gg & \tau^2 Q^2 \\ \hline hard & jet & soft \end{array}$$

RESUMMATION

$$\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} = H(Q^2,\mu) \int dM_1^2 \int dM_2^2 J(M_1^2,\mu) J(M_2^2,\mu) S_T(\tau Q - \frac{M_1^2 + M_2^2}{Q},\mu)$$

- The presence of the three separated scales leads to large perturbative logarithms.
 - Any choice of μ will produce large logarithms in either H, J or S.
- *H* and *J* are Wilson coefficients in SCET, *S* a matrix element,
 - fulfill renormalization group equation.

RESUMMATION BY RG EVOLUTION

• Evaluate each part at its characteristic scale, evolve to common scale:

RESUMMED THRUST DISTRIBUTION

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = U(\mu_h, \mu_i, \mu_s) \left(\frac{Q^2}{\mu_h^2}\right)^{-2a_{\Gamma}(\mu_h, \mu_i)} H(Q^2, \mu_h)$$
$$\times \left[\tilde{j} \left(\ln\frac{\mu_s Q}{\mu_i^2} + \partial_{\eta}, \mu_i\right)\right]^2 \tilde{s}_T \left(\partial_{\eta}, \mu_s\right) \frac{1}{\tau} \left(\frac{\tau Q}{\mu_s}\right)^{\eta} \frac{e^{-\gamma_E \eta}}{\Gamma(\eta)}$$

- \tilde{j} and \tilde{s}_T are Laplace transforms of J and S_T
- U is an evolution factor from solving RG eq's
- For N³LL resummation, we need:
 - 4-loop Γ_{cusp} (use Pade approx. for 4-loop term),
 - 3-loop γ's,
 - 2-loop H, \tilde{j} and \tilde{s} .

All ingredients known except 2-loop soft function. Obtain it numerically using EVENT2

NNLO SINGULAR TERMS

- With 2-loop *H*, *J* and *S* and 3-loop anomalous dimension we predict all singular terms at α_s^3 .
- For small τ singular terms dominate full result: check of NNLO calculation of Gehrmann et al.
- In our paper arXiv:0803.0342, we found disagreement at small τ values in 2 color structures.
- In arXiv:0807.3241 Stefan Weinzierl identified a soft divergence in one of the subtraction terms used by Gehrmann et al.
 - Affects thrust at small τ. New numerical results for thrust by Weinzierl and by Gehrman et al. should soon be available.

NNLO SINGULAR TERMS

 Nice agreement with preliminary corrected results obtained from T. Gehrmann (thanks!)

- Note: correction only affects region of very small τ
 - Should have negligible impact on α_s extraction.

INDIVIDUAL COLOR STRUCTURES: SMALL τ

LEADING COLOR STRUCTURE

 Nice agreement with preliminary corrected results obtained from T. Gehrmann

MATCHING

- Will now combine resummation and fixed order result to obtain α_s from a fit to LEP data.
- Different possibilities, we use

order	fixed-order	logarithmic
	matching	accuracy
$1^{st}order$		NLL
2 nd order	LO	NNLL
3 rd order	NLO	$N^{3}LL$
4 th order	NNLO	$N^{3}LL$

• note: previous speaker G. Luisoni used NLL+NNLO

RESUMMED VS. FIXED ORDER

• For PDG value $\alpha_s(M_Z)=0.1176$.

RESUMMEDVS. FIXED ORDER

• For PDG value $\alpha_s(M_Z)=0.1176$

• This is the region relevant for α_s determination

PHENOMENOLOGICAL APPLICATIONS

• Determination of α_s

- Scale variation, error band method
 - Fit to ALEPH and OPAL LEP data
- Bound on light gluinos Kaplan and Schwartz '08
- Comparison with event generator results at ILC energies

THEORETICAL UNCERTAINTY

- We will assess the perturbative uncertainty in the standard way, by varying the renormalization (resp. matching) scales.
 - To the order of the calculation, the cross section is independent of these scales;
 - variation then is a measure of unknown higher order terms.
- We have four scales
 - $\mu_{hard}^2 \sim Q^2$: scale at which *H* is evaluated
 - $\mu_{jet}^2 \sim \tau Q^2$: scale at which *J* is evaluated
 - $\mu_{\text{soft}}^2 \sim \tau^2 Q^2$: scale at which S_T is evaluated
 - μ_{match}^2 : scale of the regular terms

INDEPENDENT SCALE VARIATION

• Varying jet and soft scale independently by a factor 2 makes no sense at moderate τ (leads to $\mu_{soft} > \mu_{jet}$, etc.), overestimates the uncertainty.

JET AND SOFT SCALE VARIATION

Instead of independently varying the jet and soft scales, we vary as follows

• correlated: $\mu_{jet} \rightarrow \alpha \mu_{jet}$, $\mu_{soft} \rightarrow \alpha \mu_{soft}$ with $1/2 < \alpha < 2$

• squeeze: $\mu_{jet} \rightarrow \sqrt{\alpha} \, \mu_{jet}$, $\mu_{soft} \rightarrow \alpha \, \mu_{soft}$ with $1/\sqrt{2} < \alpha < \sqrt{2}$

ERROR BAND METHOD

Jones, Ford, Salam Stenzel & Wicke '03; adopted by ALEPH and OPAL

- Perform χ^2 -fit to the data, extract best-fit value of α_s . Calculate maximum deviation from default distribution: "error band".
- To get theoretical uncertainty, calculate max. and min. α_s for which theoretical distribution lies inside the error band.

EXPERIMENTAL UNCERTAINTY

- OPAL '05 and ALEPH '03 give results for binned thrust distributions. Do not provide correlations.
- Put only stat. err. in our χ^2 -fit. For each Q, use same fit ranges as exp. paper and use their systematic uncertainties.

 $\alpha_s(m_Z) = 0.1172 \pm 0.0010 \text{(stat)} \pm 0.0008 \text{(sys)} \pm 0.0012 \text{(had)} \pm 0.0012 \text{(pert)}$ = 0.1172 ± 0.0022.

 $[PDG: \alpha_s(m_Z) = 0.1176 \pm 0.0020]$

BOUND ON LIGHT GLUINOS

Kaplan and Schwartz '08

- Gluinos would affect *H*, *J* and *S* functions at the twoloop level. Leading effect is $\Delta n_f = 3$
 - in hard function H if $m_{\tilde{g}} < Q$,
 - in jet function J if $m_{\tilde{g}} < \sqrt{\tau}Q$,
 - in soft function S if $m_{\tilde{g}} < \tau Q$,

COMPARISON WITH PYTHIA

• hadronic Pythia agrees perfectly with the ALEPH data

• partonic Pythia does much better than NLL

I TEV LEPTON COLLIDER

- Partonic Pythia now looks much more NLL like.
- Will need to retune (or redesign) the shower.
 - Can tune partonic shower to our theoretical prediction.

I TEV LEPTON COLLIDER

• Can tune partonic shower to our theoretical prediction.

SUMMARY

- Have used effective field theory methods to resum thrust distribution to N³LL.
 - Traditional method works only up to NLL.
 - Logarithmically enhanced contributions dominate. Have evaluated all singular terms at α_s^3 .
 - Check of NNLO calculation of $e^+e^- \rightarrow 3$ jets.
 - Also other event shapes can be improved beyond NLL
- Extract α_s from a fit to LEP data:

 $\alpha_s(m_Z) = 0.1172 \pm 0.0010(\text{stat}) \pm 0.0008(\text{sys}) \pm 0.0012(\text{had}) \pm 0.0012(\text{pert})$

- Most precise determination of α_s at high energies, agrees well with low energy determinations.
- Theoretical accuracy matches exp. precision at the ILC

EXTRA SLIDES

POWER CORRECTIONS

- So far, we have not included 1/Q power corrections:
 - finite b-quark mass effects $\approx +1.5\%$ at LEP I
 - calculated perturbatively, e.g. using NLO event generator by Nason and Oleari.
 - could perform resummation for this part, using SCET, see Sonny Mantry's talk
 - hadronisation ~ -1.5% at LEP I
 - estimated using Pythia to calculate transfer matrix
 - uncertainty is estimated by comparing Pythia to Herwig and Ariadne: 2.5% at LEP I. Now the dominant uncertainty!
 - Our precise perturbative prediction can and should be used to study hadronisation effects in more detail, using also lower energy data.

PDG AVERAGE

