Event Shapes at NLLA+NNLO

Gionata Luisoni
In collaboration with G.Dissertori, A.Germann-De Ridder, T.Gehrmann, E.W.N.Glover, G.Heinrich and H.Stenzel
luisonig@physik.uzh.ch

Institut für theoretische Physik,
Universität Zürich.
17.11.2008

Outline

- Motivation
- Event shapes Observables
- Cross section calculations
- Fixed order calculations
- Resummed calculations - Matching
- Matched results
- Determination of α_{S}

Motivation

』 $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 3$ jet reaction: very prominent role for phenomenology:

- discovery of gluon and its properties,

1. precise determination of the QCD coupling constant α_{s}.

- Instead of looking only at jet rates, we can study their shape in the final state: \Longrightarrow EVENT SHAPE OBSERVABLES

Event shape observables

- Parametrize geometrical properties of energy-momentum flow,
- canonical example:

$$
T=\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}
$$

$$
\mathrm{T}=1
$$

- popular observables for testing QCD $\leftrightarrow \mathrm{IR} \&$ collinear safe,
- measured very precisely at LEP:
- error in the determination of α_{S} mainly from theoretical uncertainty
$\alpha_{s}\left(M_{Z}\right)=0.1202 \pm 0.0003($ stat $) \pm 0.0009($ sys $) \pm 0.0013$ (had)

Event shape observables

Theoretical calculations:

- State-of-the-art one year ago:

Event shape observables

Theoretical calculations:

- State-of-the-art one year ago:

- Very important progress in the last year

」 NNLO calculations and matching with NLLA of the LEP standard set of event shape observables,
[Gehrmann, Gehrmann-De-Ridder, Glover, Heinrich; Gehrmann, G.L., Stenzel]
e N^{3} LL resummation in SCET and matching with NNLO for T, [Schwartz; Becher, Schwartz]

」 Non-perturbative $1 / Q$ corrections to NLLA+NNLO for T, [Davison, Webber]

Fixed Order Calculations

- For an observable y the differential cross section at NNLO is given

$$
\begin{aligned}
& \text { by }\left(\bar{\alpha}_{s}=\frac{\alpha_{s}}{2 \pi}, x_{\mu}=\frac{\mu}{Q}\right) \text { : } \\
& \frac{1}{\sigma_{\text {had }}} \frac{\mathrm{d} \sigma}{\mathrm{~d} y}(y, Q, \mu)=\bar{\alpha}_{s}(\mu) \frac{\mathrm{d} \bar{A}}{\mathrm{~d} y}(y)+\bar{\alpha}_{s}^{2}(\mu) \frac{\mathrm{d} \bar{B}}{\mathrm{~d} y}\left(y, x_{\mu}\right)+\bar{\alpha}_{s}^{3}(\mu) \frac{\mathrm{d} \bar{C}}{\mathrm{~d} y}\left(y, x_{\mu}\right)+\mathcal{O}\left(\bar{\alpha}_{s}^{4}\right) .
\end{aligned}
$$

Fixed Order Calculations

For an observable y the differential cross section at NNLO is given by $\left(\bar{\alpha}_{s}=\frac{\alpha_{s}}{2 \pi}, x_{\mu}=\frac{\mu}{Q}\right)$:
$\frac{1}{\sigma_{\mathrm{had}}} \frac{\mathrm{d} \sigma}{\mathrm{d} y}(y, Q, \mu)=\underbrace{\bar{\alpha}_{s}(\mu) \frac{\mathrm{d} \bar{A}}{\mathrm{~d} y}(y)}_{L O}+\underbrace{\bar{\alpha}_{s}^{2}(\mu) \frac{\mathrm{d} \bar{B}}{\mathrm{~d} y}\left(y, x_{\mu}\right)}_{N L O}+\underbrace{\bar{\alpha}_{s}^{3}(\mu) \frac{\mathrm{d} \bar{C}}{\mathrm{~d} y}\left(y, x_{\mu}\right)}_{N N L O}+\mathcal{O}\left(\bar{\alpha}_{s}^{4}\right)$.

LO	$\gamma^{*} \rightarrow q \bar{q} g$	tree level	NNLO	$\gamma^{*} \rightarrow q \bar{q} g$
			two loop	
NLO	$\gamma^{*} \rightarrow q \bar{q} g$	one loop		$\gamma^{*} g g$
one loop				
$\gamma^{*} \rightarrow q \bar{q} g g$	tree level	$\gamma^{*} \rightarrow q \bar{q} q \bar{q}$	one loop	
$\gamma^{*} \rightarrow q \bar{q} q \bar{q}$	tree level	$\gamma^{*} \rightarrow q \bar{q} q \bar{q} g$	tree level	
		$\gamma^{*} \rightarrow q \bar{q} g g g$	tree level	

Fixed Order Calculations

- For an observable y the differential cross section at NNLO is given by $\left(\bar{\alpha}_{s}=\frac{\alpha_{s}}{2 \pi}, x_{\mu}=\frac{\mu}{Q}\right)$:

$$
\frac{1}{\sigma_{\mathrm{had}}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} y}(y, Q, \mu)=
$$

$$
+\underbrace{\bar{\alpha}_{s}^{2}(\mu) \frac{\mathrm{d} \bar{B}}{\mathrm{~d} y}\left(y, x_{\mu}\right)}_{N L O}+\underbrace{\bar{\alpha}_{s}^{3}(\mu) \frac{\mathrm{d} \bar{C}}{\mathrm{~d} y}\left(y, x_{\mu}\right)}_{N N L O}+\mathcal{O}\left(\bar{\alpha}_{s}^{4}\right)
$$

LOO	γ^{*}	tree level	NNLO	$\gamma^{*} \rightarrow q \bar{q} g$	two loop
			$\gamma^{*} \rightarrow q \bar{q} g g$	one loop	
NLO	$\gamma^{*} \rightarrow q \bar{q} g$	one loop		$\gamma^{*} \rightarrow q \bar{q} q \bar{q}$	one loop
	$\gamma^{*} \rightarrow q \bar{q} g g$	tree level	$\gamma^{*} \rightarrow q \bar{q} q \bar{q} g$	tree level	
$\gamma^{*} \rightarrow q \bar{q} q \bar{q}$	tree level	$\gamma^{*} \rightarrow q \bar{q} g g g$	tree level		

- Coefficient functions $\frac{d \overline{1}}{d y}, \frac{d \bar{B}}{d y}, \frac{d \bar{C}}{d y}$ are functions of $L \equiv \ln \frac{1}{y}$,

1 describe the enhancement due to soft and collinear emissions.

Fixed Order Calculations

- NLO and NNLO calculations:
£ careful subtraction of real and virtual divergencies using antenna method:

$$
\begin{aligned}
d \sigma_{\mathrm{NLO}}= & \int_{d \Phi_{m+1}}\left(d \sigma_{\mathrm{NLO}}^{\mathrm{R}}-d \sigma_{\mathrm{NLO}}^{\mathrm{S}}\right)+\left[\int_{d \Phi_{m+1}} d \sigma_{\mathrm{NLO}}^{\mathrm{S}}+\int_{d \Phi_{m}} d \sigma_{\mathrm{NLO}}^{\mathrm{V}}\right] \\
d \sigma_{\mathrm{NNLO}}= & \int_{d \Phi_{m+2}}\left(d \sigma_{\mathrm{NNLO}}^{\mathrm{R}}-d \sigma_{\mathrm{NNLO}}^{\mathrm{S}}\right)+\int_{d \Phi_{m+2}} d \sigma_{\mathrm{NNLO}}^{\mathrm{S}} \\
& +\int_{d \Phi_{m+1}}\left(d \sigma_{\mathrm{NNLO}}^{\mathrm{V}, 1}-d \sigma_{\mathrm{NSLO}}^{\mathrm{VS}, 1}\right)+\int_{d \Phi_{m+1}} d \sigma_{\mathrm{NNLO}}^{\mathrm{VS}, 1} \\
& +\int_{d \Phi_{m}} d \sigma_{\mathrm{NNLO}}^{\mathrm{V}, 2}
\end{aligned}
$$

£ Implemented in the EERAD3 integration programme.

Fixed Order Calculations

- Inconsistency in the treatment of large-angle radiation, [wenzeri]
£ inconsistency was corrected and cross-checks are in progress,
- numerically minor changes in the kinematical region of interest for phenomenology.

Fixed Order Calculations

- Consider cumulative cross section $R(y, Q, \mu) \equiv \frac{1}{\sigma_{\text {had }}} \int_{0}^{y} \frac{d \sigma(x, Q, \mu)}{d x} d x$,

$$
R(y, Q, \mu)=1+\mathcal{A}(y) \bar{\alpha}_{s}(\mu)+\mathcal{B}\left(y, x_{\mu}\right) \bar{\alpha}_{s}^{2}(\mu)+\mathcal{C}\left(y, x_{\mu}\right) \bar{\alpha}_{s}^{3}(\mu) .
$$

$\bar{\alpha}_{s} \mathcal{A}(y)$	$\bar{\alpha}_{s} L$	$\bar{\alpha}_{s} L^{2}$				
$\bar{\alpha}_{s}^{2} \mathcal{B}\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{2} L$	$\bar{\alpha}_{s}^{2} L^{2}$	$\bar{\alpha}_{s}^{2} L^{3}$	$\bar{\alpha}_{s}^{2} L^{4}$		
$\bar{\alpha}_{s}^{3} \mathcal{C}\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{3} L$	$\bar{\alpha}_{s}^{3} L^{2}$	$\bar{\alpha}_{s}^{3} L^{3}$	$\bar{\alpha}_{s}^{3} L^{4}$	$\bar{\alpha}_{s}^{3} L^{5}$	$\bar{\alpha}_{s}^{3} L^{6}$

- If L is NOT large, contributions become smaller line-by-line.
\perp In phase space region where $y \rightarrow 0, L \rightarrow \infty$:
\longrightarrow coefficient functions become large spoiling the convergence of the series expansion.
- Main contribution comes from highest power of the logarithms.

Fixed Order Calculations

- Consider cumulative cross section $R(y, Q, \mu) \equiv \frac{1}{\sigma_{\text {had }}} \int_{0}^{y} \frac{d \sigma(x, Q, \mu)}{d x} d x$,

$$
R(y, Q, \mu)=1+\mathcal{A}(y) \bar{\alpha}_{s}(\mu)+\mathcal{B}\left(y, x_{\mu}\right) \bar{\alpha}_{s}^{2}(\mu)+\mathcal{C}\left(y, x_{\mu}\right) \bar{\alpha}_{s}^{3}(\mu) .
$$

- If L is NOT large, contributions smaller line-by-line.

1. In phase space region whr $L 0, L \rightarrow \infty$:
\longrightarrow coefficient functions brarge spoiling the convergence of the series expansion.
(1) Main contribu mes from highest power of the logarithms.

Resummed Calculations

- Idea: resum the highest powers of the logarithms to all orders in perturbation theory

$\bar{\alpha}_{s} \mathcal{A}(y)$	$\bar{\alpha}_{s} L$	$\bar{a}_{s} L^{2}$				
$\bar{\alpha}_{s}^{2} \mathcal{B}\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{2} L$	$\bar{\alpha}_{s}^{2} L^{2}$	$\bar{\alpha}_{s}^{2} L^{3}$	$\bar{\alpha}_{s}^{2} L^{4}$		
$\bar{\alpha}_{s}^{3} C\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{3} L$	$\bar{\alpha}_{s}^{3} L^{2}$	$\bar{\alpha}_{s}^{3} L^{3}$	$\bar{\alpha}_{s}^{3} L^{4}$	$\bar{\alpha}_{s}^{3} L^{5}$	$\bar{\alpha}_{s}^{3} L^{6}$

Resummed Calculations

- Idea: resum the highest powers of the logarithms to all orders in perturbation theory

$\bar{\alpha}_{s} \mathcal{A}(y)$	$\bar{\alpha}_{s} L$	$\bar{\alpha}_{s} L^{2}$				
$\bar{\alpha}_{s}^{2} \mathcal{B}\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{2} L$	$\bar{\alpha}_{s}^{2} L^{2}$	$\bar{\alpha}_{s}^{2} L^{3}$	$\bar{\alpha}_{s}^{2} L^{4}$		
$\bar{\alpha}_{s}^{3} C\left(y, x_{\mu}\right)$	$\bar{\alpha}_{s}^{3} L$	$\bar{\alpha}_{s}^{3} L^{2}$	$\bar{\alpha}_{s}^{3} L^{3}$	$\bar{\alpha}_{s}^{3} L^{4}$	$\bar{\alpha}_{s}^{3} L^{5}$	$\bar{\alpha}_{s}^{3} L^{6}$

- Next-to-Leading logarithms
- From trivial exponentiation

Resummed Calculations

- For suitable observables, resummation of logarithms leads to exponentiation

$$
\Sigma(y)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

with

$$
g_{2}\left(\alpha_{s} L\right)=G_{11} L \bar{\alpha}_{s}+G_{22} L^{2} \bar{\alpha}_{s}^{2}+G_{33} L^{3} \bar{\alpha}_{s}^{3}+\ldots(\mathrm{NLL})
$$

Resummed Calculations

- For suitable observables, resummation of logarithms leads to exponentiation

$$
\Sigma(y)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

with

$$
=
$$

$$
g_{2}\left(\alpha_{s} L\right)=G_{11} L \bar{\alpha}_{s}+G_{22} L^{2} \bar{\alpha}_{s}^{2}+G_{33} L^{3} \bar{\alpha}_{s}^{3}+\ldots \text { (NLL) }
$$

- Integrated cross section at NLLA to be matched with NNLO:

$$
\begin{aligned}
R(y)= & \left(1+C_{1} \alpha_{s}+C_{2} \alpha_{s}^{2}+C_{3} \alpha_{s}^{3}\right) \times \\
& e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\bar{\alpha}_{s}^{2} G_{21} L+\bar{\alpha}_{s}^{3} G_{32} L^{2}+\bar{\alpha}_{s}^{3} G_{31} L}+ \\
& \underbrace{C\left(\alpha_{s}\right) \Sigma(y)}_{\text {logarithmic part }}+
\end{aligned}
$$

$C_{1}, C_{2}, C_{3}, G_{21}, G_{32}, G_{31}, \quad:$ to be determined by matching with fixed order.

Matching

- Different matching schemes

1 R-matching scheme:

- Two predictions for $R(y)$ are matched and double-counting terms are subtracted.
- Unknown matching coefficients $C_{1}, C_{2}, C_{3}, G_{21}, G_{32}, G_{31}$ numerically determined from fixed order result.

Matching

- Different matching schemes

」 R-matching scheme:

- Two predictions for $R(y)$ are matched and double-counting terms are subtracted.
- Unknown matching coefficients $C_{1}, C_{2}, C_{3}, G_{21}, G_{32}, G_{31}$ numerically determined from fixed order result.
£ Log(R)-matching scheme:
- Logarithm of $R(y)$ is matched and double-counting terms are subtracted.
- All matching coefficients from expansion of resummed result.

Matching

- Different matching schemes

」 R-matching scheme:

- Two predictions for $R(y)$ are matched and double-counting terms are subtracted.
- Unknown matching coefficients $C_{1}, C_{2}, C_{3}, G_{21}, G_{32}, G_{31}$ numerically determined from fixed order result.
£ Log(R)-matching scheme:
L Logarithm of $R(y)$ is matched and double-counting terms are subtracted.
- All matching coefficients from expansion of resummed result.

Log- R matching scheme

- To NLLA + NNLO the integrated cross section in the Log- R matching scheme is given by

$$
\begin{aligned}
\ln \left(R\left(y, \alpha_{S}\right)\right)= & L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right) \\
& +\bar{\alpha}_{S}\left(\mathcal{A}(y)-G_{11} L-G_{12} L^{2}\right)+ \\
& +\bar{\alpha}_{S}^{2}\left(\mathcal{B}(y)-\frac{1}{2} \mathcal{A}^{2}(y)-G_{22} L^{2}-G_{23} L^{3}\right) \\
& +\bar{\alpha}_{S}^{3}\left(\mathcal{C}(y)-\mathcal{A}(y) \mathcal{B}(y)+\frac{1}{3} \mathcal{A}^{3}(y)-G_{33} L^{3}-G_{34} L^{4}\right) .
\end{aligned}
$$

- fixed order
- resummation

Log- R matching scheme

- To NLLA + NNLO the integrated cross section in the Log- R matching scheme is given by

$$
\begin{aligned}
\ln \left(R\left(y, \alpha_{S}\right)\right)= & L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right) \\
& +\bar{\alpha}_{S}\left(\mathcal{A}(y)-G_{11} L-G_{12} L^{2}\right)+ \\
& +\bar{\alpha}_{S}^{2}\left(\mathcal{B}(y)-\frac{1}{2} \mathcal{A}^{2}(y)-G_{22} L^{2}-G_{23} L^{3}\right) \\
& +\bar{\alpha}_{S}^{3}\left(\mathcal{C}(y)-\mathcal{A}(y) \mathcal{B}(y)+\frac{1}{3} \mathcal{A}^{3}(y)-G_{33} L^{3}-G_{34} L^{4}\right) .
\end{aligned}
$$

- resummation
- To ensure the vanishing of the matched expression at the kinematical boundary $y_{\text {max }}$

$$
L \longrightarrow \tilde{L}=\frac{1}{p} \ln \left(\left(\frac{y_{0}}{y x_{L}}\right)^{p}-\left(\frac{y_{0}}{y_{\max } x_{L}}\right)^{p}+1\right),
$$

with $y_{0}=6$ for $y=C$ and $y_{0}=1$ otherwise, $\left(x_{L}=p=1\right)$.
[Ford, Jones, Salam, Stenzel, Wicke.]

Renormalization scale dependence

- The full renormalization scale dependence is given by making the following replacements,

$$
\begin{aligned}
\alpha_{s} & \rightarrow \alpha_{s}(\mu), \\
\mathcal{B}(y) & \rightarrow \mathcal{B}(y, \mu)=2 \beta_{0} \ln x_{\mu} \mathcal{A}(y)+\mathcal{B}(y), \\
\mathcal{C}(y) & \rightarrow \mathcal{C}(y, \mu)=\left(2 \beta_{0} \ln x_{\mu}\right)^{2} \mathcal{A}(y)+2 \ln x_{\mu}\left[2 \beta_{0} \mathcal{B}(y)+2 \beta_{1} \mathcal{A}(y)\right]+\mathcal{C}(y), \\
g_{2}\left(\alpha_{S} L\right) & \rightarrow g_{2}\left(\alpha_{S} L, \mu^{2}\right)=g_{2}\left(\alpha_{S} L\right)+\frac{\beta_{0}}{\pi}\left(\alpha_{S} L\right)^{2} g_{1}^{\prime}\left(\alpha_{S} L\right) \ln x_{\mu}, \\
G_{22} & \rightarrow G_{22}(\mu)=G_{22}+2 \beta_{0} G_{12} \ln x_{\mu}, \\
G_{33} & \rightarrow G_{33}(\mu)=G_{33}+4 \beta_{0} G_{23} \ln x_{\mu} .
\end{aligned}
$$

Results: renormalization scale dependence

- Thrust T: consider $\tau=1-T$

- Difference between NLLA+NNLO and NNLO restricted to the two-jet region, whereas NLLA+NLO differ in normalisation throughout the full kinematical range.

Results: renormalization scale dependence

- Thrust T: consider $\tau=1-T$

D Difference between NLLA+NNLO and NLLA+NLO moderate in the three-jet region.
,
Renormalization scale dependence reduced in three-jet region.

Results: renormalization scale dependence

- Thrust T: consider $\tau=1-T$

- Description of the hadron-level data improves between parton-level NLLA+NLO and parton-level NLLA+NNLO, especially in the three-jet region.

Results: renormalization scale dependence

- Thrust T: consider $\tau=1-T$

- Comparison between matched results using old and corrected new histograms: the small difference in the IR region disappears, resummation becomes dominant.

Results

- Full set of event shape variables:

1 Heavy jet mass:

$$
\rho=\frac{M_{H}^{2}}{s}=\max _{i} \frac{1}{E_{\mathrm{vi}}}\left(\sum_{k \in H_{i}} p_{k}\right)^{2}
$$

1 C-parameter:

$$
\Theta^{\alpha \beta}=\frac{1}{\sum_{k}\left|\vec{p}_{k}\right|} \frac{\sum_{k} p_{k}^{\alpha} p_{k}^{\beta}}{\sum_{k}\left|\vec{p}_{k}\right|},
$$

$$
C=3\left(\Theta^{11} \Theta^{22}+\Theta^{22} \Theta^{33}+\Theta^{33} \Theta^{22}-\Theta^{12} \Theta^{12}-\Theta^{23} \Theta^{23}-\Theta^{31} \Theta^{31}\right)
$$

£ Total jet broadening: $\quad B_{T}=B_{1}+B_{2}$

$$
B_{i}=\frac{\sum_{k \in H_{i}}\left|\vec{p}_{k} \times \vec{n}_{T}\right|}{2 \sum_{k}\left|\vec{p}_{k}\right|}
$$

£ Wide jet broadening: $\quad B_{W}=\max \left(B_{1}, B_{2}\right)$,

- Two-to-three jet parameter for Durham jet algorithm:

$$
y_{i j, D}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{E_{\mathrm{vi}}^{2}}
$$

Determination of α_{S}

- Recent works:

」 α_{S} fit using only theoretical NNLO predictions and ALEPH data,
[Dissertori, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, Stenzel.]
」 α_{S} fit using theoretical NNLO and NLLA+NNLO predictions and JADE data,
[Bethke, Kluth, Pahl, Schieck and JADE Collaboration.]

Determination of α_{S}

- Recent works:

」 α_{S} fit using only theoretical NNLO predictions and ALEPH data,
[Dissertori, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, Stenzel.]
\& α_{S} fit using theoretical NNLO and NLLA+NNLO predictions and JADE data,
[Bethke, Kluth, Pahl, Schieck and JADE Collaboration.]

- Work still in progress:
£ α_{S} fit using the the matched NLLA+NNLO predictions and ALEPH data.

Determination of α_{S}

- Analysis outline

- use public ALEPH data on event shapes, Hesier etal]
£ data are corrected to hadron level using MC corrections accounting for ISR/FSR and background,

」 data are fitted by NNLO or NLLA+NNLO predictions, including NLO quark mass correction, folded to hadron level by MC generators,

1. combine 6 variables and 8 data sets (LEPI + LEPII)

Determination of $\alpha_{S}:$ NLLA+NNLO fits to data

- data are fit in the central part of the event shape distribution,
- only statistical uncertainties are included in the χ^{2}.

Determination of $\alpha_{S}:$ NLLA+NNLO fits to data

- NNLO vs NLLA+NLO

-. clear improvement of NNLO over NLO, - good fit quality (but includes still large statistical uncertainties of C-coefficient),
1 matched NLLA+NLO still yields a better prediction in the 2-jet region,

Determination of α_{S} : NLLA+NNLO fits to data

- NNLO vs NLLA+NLO
- clear improvement of NNLO over NLO,
- good fit quality (but includes still large statistical uncertainties of C-coefficient),
1 matched NLLA+NLO still yields a better prediction in the 2 -jet region,
- NLLA+NNLO vs NNLO
- better predictions in two jet region,
- extended fit range,
- fit to fixed order calculations gives higher values for α_{S},
tendency to decrease from NLO to NNLO.

Determination of $\alpha_{S}:$ perturbative uncertainty

- Uncertainty band method to estimate missing higher orders
[Ford, Jones, Salam, Stenzel, Wicke.]
1 evaluate distribution of event shape y for a given value of α_{S} with a reference theory,
- calculate theoretical uncertainties for $y \rightarrow$ uncertainty band,

1. fill the uncertainty band with the nominal prediction by varying α_{s},
(corresponding variation range for α_{S} is assigned as systematic uncertainty.

- Parameter taken into account
\perp for NNLO fit: only x_{μ} variation,

1. for NLLA+NNLO fit: variation of $x_{\mu}, x_{L}, y_{\text {max }}, p$ and matching scheme.

Determination of $\alpha_{S}:$ NNLO results

- $\alpha_{S}\left(M_{Z}\right)$
- consistent results at NNLO,
- scattering between variables much reduced.
- calculate weighted average for $\alpha_{S}(Q)$ from 6 variables $\bar{\alpha}_{S}=\sum_{i=1}^{6} w_{i} \alpha_{S}^{i}, \quad w_{i} \propto \frac{1}{\sigma_{i}^{2}}$

$\Rightarrow \bar{\alpha}_{S}\left(M_{Z}\right)=0.1240 \pm 0.0033$

Determination of $\alpha_{S}:$ NLLA+NNLO results

- Not yet, but still some hints:
- improvement from NNLO to NLLA+NNLO smaller than from NLO to NLLA+NLO: two loop running terms not compensated in NLLA.

- Tendency confirmed by JADE Collaboration analysis.

Conclusions and outlook

- Matched NLLA+NNLO distributions in the log-R matching scheme,

1. NLLA+NNLO results improved wrt. NLLA+NLO especially in 3-jet region,

- in 2-jet region better prediction than NNLO, but far from perfect.

Conclusions and outlook

- Matched NLLA+NNLO distributions in the log-R matching scheme,

1 NLLA+NNLO results improved wrt. NLLA+NLO especially in 3-jet region,

- in 2-jet region better prediction than NNLO, but far from perfect.
- α_{S} determination with NNLO calculations: $\bar{\alpha}_{S}\left(M_{Z}\right)=0.1240 \pm 0.0033$
- substantial improvement over NLO and NLLA+NLO,
- competitive result, but "somewhat" high compared to other results.

Conclusions and outlook

- Matched NLLA+NNLO distributions in the log-R matching scheme,
- NLLA+NNLO results improved wrt. NLLA+NLO especially in 3-jet region, 1 in 2-jet region better prediction than NNLO, but far from perfect.
- α_{S} determination with NNLO calculations: $\bar{\alpha}_{S}\left(M_{Z}\right)=0.1240 \pm 0.0033$
- substantial improvement over NLO and NLLA+NLO,
- competitive result, but "somewhat" high compared to other results.
- Further steps and improvements:
- combinations of α_{S} measurements using NLLA+NNLO, [work in progress]
- resummation of subleading logarithms (for all observables),

」 inclusion of EW-corrections and hadronization corrections from modern
NLO+PS MC.

