Calculating gluon one-loop amplitudes numerically

[Linear Collider Workshop 2008]

$$
\begin{gathered}
\text { Jan Winter } \\
\text { - Fermilab - }
\end{gathered}
$$

- Next-to-leading order calculations
- Algorithm - from tree-level to one-loop amplitudes
- Preliminary results - work in progress

[^0]http://www.sherpa-mc.de/

NLO calculations

Lessons learned from LEP, HERA, Tevatron:

LO predictions are fine, yet often give rough estimates only
(new experiments \Rightarrow complex processes containing multijet final states
(1) correct interpretation of data \Rightarrow accurate theoretical descriptions are required
\rightarrow NLO: 1st real predicition of normalization of many observables
less sensitivity to unphysical input scales ($\mu_{\mathrm{F}} \& \mu_{\mathrm{R}}$)
more physics (parton merging, jet substructure, ISR, more IS parton species)

NLO calculations

\Rightarrow Lessons learned from LEP, HERA, Tevatron:
LO predictions are fine, yet often give rough estimates only
(new experiments \Rightarrow complex processes containing multijet final states
(1) correct interpretation of data \Rightarrow accurate theoretical descriptions are required
\rightarrow NLO: 1st real predicition of normalization of many observables
less sensitivity to unphysical input scales ($\mu_{\mathrm{F}} \& \mu_{\mathrm{R}}$)
more physics (parton merging, jet substructure, ISR, more IS parton species)

\Rightarrow Components of NLO calculations

(tree-level amplitudes (LO \& real radiation) + one-loop correction to Born level + subtraction terms to handle and combine singularities + phase-space generator

- computational algorithms based on Feynman diagram calculations are of exponential complexity
- the real bottleneck, virtual corrections (tensor-integral reductions generate large \# of terms)
- @ tree level: algorithms of polynomial complexity exist ($\tau \sim N$ \#)
recursive methods efficiently re-use recurring groups of offshell Feynman graphs
- @ loop level: unitarity-cut methods factorize one-loop into tree amplitudes computing time grows with \# of cuts \& depends on algorithm employed at tree level

Goal \Rightarrow provide algorithm(s) [tools] of polynomial complexity to calculate virtual corrections

Unitarity techniques for 1-loop amplitudes

active field of research ...

- Britto et al.
- Bern et al. - BlackHat project and code.
- Ossola et al. - CutTools code.
- Ellis et al. - Rocket Science.
- This work is based on -
[Ellis, Giele, Kunszt, arXiv:0708.2398] 4dim method, cut-constructible part
[Giele, Kunszt, Melnikov, arXiv:0801.2237] Ddim method, rational part
[GIELE, ZANDERIGHI, ARXIV:0805.2152] APPLICATION OF DDIM METHOD TO PURE GLUONS

Decomposing one-loop amplitudes

\Rightarrow into a linear sum of scalar box, triangle, bubble and tadpole master integrals (cut-constructible part) and rational terms

$$
\mathcal{A}_{N}\left(\left\{p_{i}\right\}\right)=\sum_{\left[i_{1} \mid i_{4}\right]} d_{i_{1} i_{2} i_{3} i_{4}} I_{i_{1} i_{2} i_{3} i_{4}}^{(D)}+\sum_{\left[i_{1} \mid i_{3}\right]} c_{i_{1} i_{2} i_{3}} I_{i_{1} i_{2} i_{3}}^{(D)}+\sum_{\left[i_{1} \mid i_{2}\right]} b_{i_{1} i_{2}} I_{i_{1} i_{2}}^{(D)}+\sum_{\left[i_{1} \mid i_{1}\right]} a_{i_{1}} I_{i_{1}}^{(D)}+\mathcal{R}_{N}
$$

(master integrals known in literature
(1 and implemented in various codes, e.g. QCDLoop [Ellis, Zanderighi] (QCDLoop.fnal.gov)
』 to do: determination of the master-integral coefficients \Leftarrow unitarity techniques

- problem: extraction of lower-point coefficients
"subtracting terms already included in higher-point contributions"
- solution: identify subtraction terms at the integrand level [Ossola, Papadopoulos, Pittau] partial fractioning of the integrand: expand over 4,3,2,1 propagator terms residues of pole terms contain master-integral coefficient plus finite number of spurious terms spurious terms vanish upon integration
\Rightarrow note that $\left[i_{1}, i_{M}\right]=1 \leq i_{1}<i_{2}<\ldots<i_{M} \leq N$

$$
\text { and } \quad I_{i_{1} \ldots i_{M}}^{(D)}=\int d^{D} \ell \frac{1}{d_{i_{1}} \ldots d_{i_{M}}}
$$

re-expressing the integrand
[Ellis, Giele, Kunszt]

$$
\begin{aligned}
& \mathcal{A}_{N}\left(\left\{p_{i}\right\}, \ell\right)=\frac{\mathcal{N}\left(\left\{p_{i}\right\}, \ell\right)}{d_{1} d_{2} \ldots d_{N}}= \\
& \quad \sum_{\left[i_{1} \mid i_{4}\right]} \frac{\bar{d}_{i_{1} i_{2} i_{3} i_{4}}(\ell)}{d_{i_{1}} d_{i_{2}} d_{i_{3}} d_{i_{4}}}+\sum_{\left[i_{1} \mid i_{3}\right]} \frac{\bar{c}_{i_{1} i_{2} i_{3}}(\ell)}{d_{i_{1}} d_{i_{2}} d_{i_{3}}}+\sum_{\left[i_{1} \mid i_{2}\right]} \frac{\bar{b}_{i_{1} i_{2}}(\ell)}{d_{i_{1}} d_{i_{2}}}+\sum_{\left[i_{1} \mid i_{1}\right]} \frac{\bar{a}_{\left.i_{1}\right]}(\ell)}{d_{i_{1}}}
\end{aligned}
$$

- solve for numerator factors:
need to find $\ell=\ell_{i_{1} \ldots i_{M}}$ such that $d_{j}\left(\ell_{i_{1} \ldots i_{M}}\right)=0$ for $j=i_{1}, \ldots, i_{M}$
〇 define $\operatorname{Res}_{i_{1} \ldots i_{M}}\left(\mathcal{A}_{N}(\ell)\right)=\left.\left\{d_{i_{1}}(\ell) \ldots d_{i_{M}}(\ell) \times \mathcal{A}_{N}(\ell)\right\}\right|_{\ell=\ell_{i_{1} \ldots i_{M}}}$ then
$\bar{d}_{i_{1} i_{2} i_{3} i_{4}}(\ell)=\operatorname{Res}_{i_{1} i_{2} i_{3} i_{4}}\left(\mathcal{A}_{N}(\ell)\right), \quad \bar{c}_{i_{1} i_{2} i_{3}}(\ell)=\operatorname{Res}_{i_{1} i_{2} i_{3}}\left(\mathcal{A}_{N}(\ell)-\sum_{\left[j_{1} \mid j_{4}\right]} \frac{\bar{d}_{j_{1} j_{2} j_{3} j_{4}}(\ell)}{d_{j_{1}} d_{j_{2}} d_{j_{3}} d_{j_{4}}}\right), \ldots$
(1) find parametric (most general) form of residues, removing spurious terms \Rightarrow
box coefficient: $\quad \bar{d}_{i_{1} i_{2} i_{3} i_{4}}(\ell)=d_{i_{1} i_{2} i_{3} i_{4}}+\left(\ell n_{4}\right) \tilde{d}_{i_{1} i_{2} i_{3} i_{4}}$

$$
\Rightarrow \int d^{D} \ell \frac{\bar{d}_{i_{1} i_{2} i_{3} i_{4}}(\ell)}{d_{i_{1}} d_{i_{2}} d_{i_{3}} d_{i_{4}}}=d_{i_{1} i_{2} i_{3} i_{4}} \int d^{D} \ell \frac{1}{d_{i_{1}} d_{i_{2}} d_{i_{3}} d_{i_{4}}}=d_{i_{1} i_{2} i_{3} i_{4}} I_{i_{1} i_{2} i_{3} i_{4}}
$$

Disentangling the rational part

\Rightarrow by generalizing the unitarity method to higher dimensions
(1) keep momenta and polarization vectors of external particles in 4D
(integer dimensionality for virtual particles: 2 sources, loop momentum $\rightarrow D$, spin-polarization states $\rightarrow D_{s}$, and ensure $D_{s} \geq D$

- continuation to non-integer dimensions once coefficients determined (schemes: 'tHV, FDH)

$$
\mathcal{A}_{N}^{\left(D_{s}\right)}\left(\left\{p_{i}\right\}, \ell\right)=\frac{\mathcal{N}^{\left(D_{s}\right)}\left(\left\{p_{i}\right\}, \ell\right)}{d_{1} d_{2} \ldots d_{N}}=
$$

$$
\sum_{\left[i_{1} \mid i_{5}\right]} \frac{\bar{e}_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{\left(D_{s}\right)}(\ell)}{d_{i_{1}} d_{i_{2}} d_{i_{3}} d_{i_{4}} d_{i_{5}}}+\sum_{\left[i_{1} \mid i_{4}\right]} \frac{\bar{d}_{i_{1} i_{2} i_{3} i_{4}}^{\left(D_{s}\right)}}{d_{i_{1}} d_{i_{2}} d_{i_{3}} d_{i_{4}}}+\sum_{\left[i_{1} \mid i_{3}\right]} \frac{\bar{c}_{i_{1} i_{2} i_{3}}^{\left(D_{s}\right)}(\ell)}{d_{i_{1}} d_{i_{2}} d_{i_{3}}}+\sum_{\left[i_{1} \mid i_{2}\right]} \frac{\bar{b}_{i_{1} i_{2}}^{\left(D_{s}\right)}(\ell)}{d_{i_{1}} d_{i_{2}}}+\sum_{\left[i_{1} \mid i_{1}\right]} \frac{\bar{a}_{i_{1}}^{\left(D_{s}\right)}(\ell)}{d_{i_{1}}}
$$

(loop momentum effectively has only $4+1$ components: $\mathcal{N}(\ell)=\mathcal{N}^{\left(D_{s}\right)}\left(\ell_{1.4},-\ell_{5}^{2}-\ldots-\ell_{D}^{2}\right)$

- dependence of \mathcal{N} on D_{s} is linear: $\quad \mathcal{N}\left(D_{s}\right)(\ell)=\mathcal{N}_{0}(\ell)+\left(D_{s}-4\right) \mathcal{N}_{1}(\ell)$
$\bar{e}_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{\left(D_{s}\right)}(\ell)=\operatorname{Res}_{i_{1} i_{2} i_{3} i_{4} i_{5}}\left(\mathcal{A}_{N}^{\left(D_{s}\right)}(\ell)\right), \bar{d}_{i_{1} i_{2} i_{3} i_{4}}^{\left(D_{s}\right)}(\ell)=\operatorname{Res}_{i_{1} i_{2} i_{3} i_{4}}\left[\mathcal{A}_{N}^{\left(D_{s}\right)}(\ell)-\sum_{\left[j_{1} \mid j_{5}\right]} \frac{\bar{e}_{j_{1} j_{2} j_{3} j_{4} j_{5}}^{\left(D_{s}\right)}(\ell)}{d_{j_{1}} d_{j_{2}} d_{j_{3}} d_{j_{4}} d_{j_{5}}}\right]$
(1) parametric form of Res has larger structure \Rightarrow some new terms not spurious, 4 new master integrals
box coefficient: $\quad \bar{d}_{i_{1} \ldots i_{4}}^{\left(D_{s}\right)}(\ell)=d_{i_{1} \ldots i_{4}}^{(0)}+\left(\ln _{4}\right) d_{i_{1} \ldots i_{4}}^{(1)}+s_{e}^{2}\left[d_{i_{1} \ldots i_{4}}^{(2)}+\left(\ln _{4}\right) d_{i_{1} \ldots i_{4}}^{(3)}\right]+s_{e}^{4} d_{i_{1} \ldots i_{4}}^{(4)}$

Generating loop momenta

\Rightarrow under the constraint that the inverse propagators vanish

$$
d_{j}\left(\ell_{i_{1} \ldots i_{M}}\right)=0 \quad \text { for } \quad j=i_{1}, \ldots, i_{M}
$$

(2) definition is: $d_{i}=d_{i}(\ell)=\left(\ell+\tilde{q}_{i}\right)^{2}-m_{i}^{2}=\left(\ell+q_{i}-q_{i_{M}}\right)^{2}-m_{i}^{2}$
where $q_{i}=\sum_{j=1}^{i} p_{j}$
』 cut configuration is: $i_{1} \ldots i_{M}$

- parametrize loop momentum in D dimensions $\quad\left(\alpha_{i}=\ell n_{i}\right)$

$$
\begin{aligned}
& \ell_{i_{1} \ldots i_{M}}=V_{i_{1} \ldots i_{M}}+\sum_{j=M}^{D} \alpha_{j} n_{j} \\
& \alpha_{M}^{2}=-V_{i_{1} \ldots i_{M}}^{2}+m_{i_{M}}^{2}-\alpha_{M+1}^{2}-\ldots-\alpha_{D}^{2}
\end{aligned}
$$

』 physical space defined by external particles, (sum of) inflow momenta $\Rightarrow V_{i_{1} \ldots i_{M}}$
(1) orthogonal to physical: trivial space spanned by n_{M}, \ldots, n_{D} (re-using n 's for other cuts)

- make use of van Neerven-Vermaseren basis (involves calculation of (large) determinants)
- leaves enough freedom in choosing loop momentum ℓ

Parametric forms of residues

\Rightarrow generating the "Right-Hand-Side" (RHS) of the equation for the numerator factors

- use freedom in choosing ℓ to find coefficients, $s_{e}^{2}=-\sum_{j=5}^{D} \alpha_{j}^{2} \quad$ (clever α choices possible)

$$
\begin{aligned}
& \bar{e}_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{\left(D_{s}\right)}(\ell)=s_{e}^{2} e_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{(0)} \\
& \bar{d}_{i_{1} i_{2} i_{3} i_{4}}^{\left(D_{s}\right)}(\ell)=d_{i_{1} i_{2} i_{3} i_{4}}^{(0)}+\alpha_{4} d_{i_{1} i_{2} i_{3} i_{4}}^{(1)}+s_{e}^{2}\left[d_{i_{1} i_{2} i_{3} i_{4}}^{(2)}+\alpha_{4} d_{i_{1} i_{2} i_{3} i_{4}}^{(3)}\right]+s_{e}^{4} d_{i_{1} i_{2} i_{3} i_{4}}^{(4)} \\
& \bar{c}_{i_{1} i_{2} i_{3}}^{\left(D_{s}\right)}(\ell)=c_{i_{1} i_{2} i_{3}}^{(0)}+\alpha_{3} c_{i_{1} i_{2} i_{3}}^{(1)}+\alpha_{4} c_{i_{1} i_{2} i_{3}}^{(2)}+4 \text { more }+s_{e}^{2}\left[c_{i_{1} i_{2} i_{3}}^{(7)}+\alpha_{3} c_{i_{1} i_{2} i_{3}}^{(8)}+\alpha_{4} c_{i_{1} i_{2} i_{3}}^{(9)}\right] \\
& \bar{b}_{i_{1} i_{2}}^{\left(D_{s}\right)}(\ell)=b_{i_{1} i_{2}}^{(0)}+\alpha_{2} b_{i_{1} i_{2}}^{(1)}+\alpha_{3} b_{i_{1} i_{2}}^{(2)}+\alpha_{4} b_{i_{1} i_{2}}^{(3)}+5 \text { more }+s_{e}^{2} b_{i_{1} i_{2}}^{(9)} \\
& \bar{a}_{i_{1}}^{\left(D_{s}\right)}(\ell)=a_{i_{1}}^{(0)}+\alpha_{1} a_{i_{1}}^{(1)}+\alpha_{2} a_{i_{1}}^{(2)}+\alpha_{3} a_{i_{1}}^{(3)}+\alpha_{4} a_{i_{1}}^{(4)}
\end{aligned}
$$

(1) solving: make X choices of ℓ to solve for X coefficients
(cut-c part: $D=D_{s}=4$
』 rational part: $D>4$, (1st) $D_{s}=D+1$ (2nd) $D_{s}=D$ to eliminate D_{s} dependence of LHS

- in principle, infinite \# of equations for a fixed \# of unknowns \Rightarrow Coefficients can be fitted!

Generating the Left-Hand-Side

- What is $\operatorname{Res}_{i_{1} \ldots i_{M}}\left(\mathcal{A}_{N}^{\left(D_{s}\right)}(\ell)\right)$?

$$
=\left.\left\{d_{i_{1}}(\ell) \ldots d_{i_{M}}(\ell) \times \mathcal{A}_{N}(\ell)\right\}\right|_{d_{i_{1}}(\ell)=\cdots=d_{i_{M}}}(\ell)=0
$$

(requires calculation of factorized un-integrated one-loop amplitude
(unitarity cuts: M on-shell propagators, amplitude factorizes into M tree-level amplitudes

$$
\operatorname{Res}_{i_{1} \ldots i_{M}}\left(\mathcal{A}_{N}^{\left(D_{s}\right)}(\ell)\right)=\sum_{\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}=1}^{D_{s}-2}\left(\prod_{k=1}^{M} \mathcal{M}^{(0)}\left(\ell_{i_{k}}^{\left(\lambda_{k}\right)} ; p_{i_{k}+1}, \ldots, p_{i_{k+1}} ;-\ell_{i_{k+1}}^{\left(\lambda_{k+1}\right)}\right)\right)
$$

- two D_{s} dimensional gluons with complex momenta and $D_{s}-2$ polarization states $\left(\ell_{i_{k}}=\ell+\tilde{q}_{i_{k}}\right)$
- construct polarizations following method for n vectors
- Berends-Giele recursion relations to calculate tree-level amplitudes
- very economical scheme
- LHS:
first correct for D_{s} dependence,
 then take subtractions into account

Colour-ordered one-loop amplitude

- coefficients are now independent of dimensionality
- dimensionality can now be continued to $4-2 \epsilon$

$$
\begin{aligned}
& \mathcal{A}_{N}^{c c}=\sum_{\left[i_{1} \mid i_{4}\right]} d_{i_{1} i_{2} i_{3} i_{4}}^{(0)} I_{i_{1} i_{2} i_{3} i_{4}}^{(4-2 \epsilon)}+\sum_{\left[i_{1} \mid i_{3}\right]} c_{i_{1} i_{2} i_{3}}^{(0)} I_{i_{1} i_{2} i_{3}}^{(4-2 \epsilon)}+\sum_{\left[i_{1} \mid i_{2}\right]} b_{i_{1} i_{2}}^{(0)} I_{i_{1} i_{2}}^{(4-2 \epsilon)} \\
& \mathcal{R}_{N}=-\sum_{\left[i_{1} \mid i_{4}\right]} \frac{d_{i_{1} i_{2} i_{3} i_{4}}^{(4)}}{6}+\sum_{\left[i_{1} \mid i_{3}\right]} \frac{c_{i_{1} i_{2} i_{3}}^{(7)}}{2}-\sum_{\left[i_{1} \mid i_{2}\right]}\left(\frac{\left(q_{i_{1}}-q_{i_{2}}\right)^{2}}{6}-\frac{m_{i_{1}}^{2}+m_{i_{2}}^{2}}{2}\right) b_{i_{1} i_{2}}^{(9)}
\end{aligned}
$$

C++ code

\Rightarrow Another tool ... Rocket (Rucola) was already launched [Giele, Zanderighi]
(independent implementation (from scratch, no translation of Fortran routines)
(allows for independent xchecks of unitarity method and its results

- knowing the tool is knowing the methods, and knowing the details
- $\mathrm{C}++\ldots$ different philosophy ... modularity, transparency
- allows for combination with other $\mathrm{C}++$ codes ... potentially ... COMIX ... Gleisberg's automated CS subtraction ... Sherpa ...

N external gluons \& their polarizations \Rightarrow (leading-)colour-ordered 1-loop amplitude (FDH)

- xchecks on numbers
coefficients itself, poles (known analytically), final numbers (analytic and other calculations) gauge invariance, choice of ℓ, dimensionality (D and D_{s} variation)
- accuracy and numerical stability

$$
\varepsilon_{\mathrm{dp}, \mathrm{sp}}=\log _{10} \frac{\left|\mathcal{A}_{N, \mathrm{C}++}^{(1)(\mathrm{dp}, \mathrm{sp})}-\mathcal{A}_{N, \mathrm{anly}}^{(1)(\mathrm{dp}, \mathrm{sp})}\right|}{\left|\mathcal{A}_{N, \mathrm{anly}}^{(1)(\mathrm{dp}, \mathrm{sp})}\right|}, \quad \varepsilon_{\mathrm{fp}}=\log _{10} \frac{2\left|\mathcal{A}_{N, \mathrm{C}++}^{(1)(\mathrm{fp})}[1]-\mathcal{A}_{N, \mathrm{C}++}^{(1)(\mathrm{fp})}[2]\right|}{\left|\mathcal{A}_{N, \mathrm{C}++}^{(1)(\mathrm{fp})}[1]\right|+\left|\mathcal{A}_{N, \mathrm{C}++}^{(1)(\mathrm{fp})}[2]\right|}
$$

- efficiency - scaling of computing time with \# of legs $N \quad \rightarrow \quad \tau \sim N^{9}$

Accuracy

(preliminary) (all calculations in double precision only)

- peak positions are fine, tails seem OK, comparable to Rocket
- need to investigate on the bumpy structures for sp, fp around $\varepsilon_{X}=-1$ (more PSP needed!)
- losing finite-part precision with $N=10,11$, lost for $N=15$ (double precision not enough, too many large numbers involved)

Accuracy

(preliminary) (all calculations in double precision only)

- peak positions are fine, tails seem OK, comparable to Rocket
- need to investigate on the bumpy structures for sp, fp around $\varepsilon_{X}=-1$ (more PSP needed!)
- losing finite-part precision with $N=10,11$, lost for $N=15$
(double precision not enough, too many large numbers involved)

Accuracy

(preliminary) (all calculations in double precision only)

- peak positions are fine, tails seem OK, comparable to Rocket
- need to investigate on the bumpy structures for sp, fp around $\varepsilon_{X}=-1$ (more PSP needed!)
- losing finite-part precision with $N=10,11$, lost for $N=15$
(double precision not enough, too many large numbers involved)

Accuracy

(preliminary) (all calculations in double precision only)

- peak positions are fine, tails seem OK, comparable to Rocket
- need to investigate on the bumpy structures for sp, fp around $\varepsilon_{X}=-1$ (more PSP needed!)
- losing finite-part precision with $N=10,11$, lost for $N=15$
(double precision not enough, too many large numbers involved)

Accuracy

(preliminary) (all calculations in double precision only)

- range of numbers increases with N - Gram dets of external gluons and $e_{i j k l m}^{(0)}$ coefficients may become small and large, respectively

Correlations

> (preliminary) (all calculations in double precision only)

- precision of finite term partly correlated with smallness/largeness of Gram dets/coefficients
- still other denominators that can become small
- e.g. the leftover d_{j} in the subtraction terms (even when coefficients are not large)

Correlations

> (preliminary) (all calculations in double precision only)

- precision of finite term partly correlated with smallness/largeness of Gram dets/coefficients
- still other denominators that can become small
- e.g. the leftover d_{j} in the subtraction terms (even when coefficients are not large)

Correlations

> (preliminary) (all calculations in double precision only)

- precision of finite term partly correlated with smallness/largeness of Gram dets/coefficients
- still other denominators that can become small
- e.g. the leftover d_{j} in the subtraction terms (even when coefficients are not large)

Correlations

> (preliminary) (all calculations in double precision only)

- left: correlation between single-pole and finite-part accuracy
- right: which $e_{i j k l m}^{(0)}$ coefficient occurs when external-gluon Gram det is minimal?

Speed of the calculation

> (preliminary) (all calculations in double precision only)

- check for algorithm of polynomial complexity $\left(\tau \sim N^{x}\right)$
- check fractions: $x=\ln \frac{\tau_{N+1}}{\tau_{N}} / \ln \frac{N+1}{N}$

Basic tool is set up and running

... there's much more to do ...!!!

[^0]: ${ }^{a}$ In collaboration with: W. Giele

