

LCWS08 and ILC08

University of Illinois, Chicago, 15-20 November 2008

Blade-Tuner Performance

Carlo Pagani

University of Milano & INFN Milano - LASA

Material prepared by: Rocco Paparella, Angelo Bosotti and Nicola Panzeri

Brief historical review

- The Superstructures Blade Tuner
- The ILC Blade Tuner prototype "Slim"(ver. 3.0.0)
 - Tuner design and tuning actions
 - Cold tests of the stainless steel prototype at DESY and BESSY
- The Revised ILC Blade Tuner (ver. 3.9.4)
 - Rationales
 - Expected performances from FEM analyses: load cases and limit loads, warm tests as expected

Tuner position and plug compatibility

The Superstructure Blade Tuner

Concept: through thin "blades" transform the rotation of the 2 center ring halves in a longitudinal axial motion that changes the cavity frequency modifying its length.

Standard motor and harmonic drive

Lever arm designed by H.-B. Peters (DESY)

- Plug compatible experiment in the middle of the transition from Type 2 to Type 3 Cryomodule
- Special Type 2 cryomodule designed and built (MOD 7) to test superstructure in a Type 3 like environment, wile installed in a Type 2 module-string:
 - Type 2 vacuum vessel and pipe position, excluding 2-phase line
 - Type 3 sliding cavity supports
 - Use a standard Helium vessel (lateral bellow for Saclay tuner) and modify it while maintaining the standard interfaces
- After superstructure tests the "special" cryomodule became a standard Type 2 cryomodule (MOD 7*)

Type 2 cavity hanging and 2-phase pipe position

Type 3 cavity hanging and 2-phase pipe position

Carlo Pagani

LCWS08 & ILC08, UIC, Chicago, 18 November 2008

- After the poor and expensive experience of Type 1, final machining of the HeGRP is the key element of the new fabrication strategy. No welds are allowed after the axis deinition and the machining of reference planes
- Performances demonstrated by WPMs and HOMs

- Just slow tuning mechanism, no piezo-actuators installed
- Superstructures performed very well at 15 MV/m
- Each of the four blade tuners smoothly tuned the respective cavity to the nominal frequency
- Each cavity was maintained tuned during operation
 - Correction threshold set at few degrees (few Hz)
 - Data available on TTF database
 - Each motor step produces a 0.4 Hz frequency variation that is induced by a 1.2 nm cavity length variation (no irregularities observed because of rollers)
- Each of the two cavities of a superstructure were corrected independently with the same number of steps to maintain the critical field balance of the π -0 superstructure mode

1 motor step ~ 1.4 nm pad slide ~ 0.4 Hz frequency change

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 012002 (2004)

Test of two Nb superstructure prototypes

bation causes the same frequency shift. For this, the cold tuner of each subunit was moved by 1000, 2000, and 5000 steps and for each position the frequency change Δf of the π -0 mode was measured. Then, the final positions of the tuners were chosen to maintain exact frequency equal to 1.3 GHz of the π -0 mode and simultaneously to ensure that the subunits show the same Δf when their tuners are moved by the same number of steps. The final status of the prototypes was cross-checked in the following way. We compared, for each cold prototype, the fundamental passband frequencies with the frequencies measured at room temperature when the bead-pull method showed the best achievable field profile. The

FIG. 3. Peak-to-peak field flatness. (a) P1, 92% and (b) P2, 94%.

Modified Standard TTF He Tank

Motivation

- build 2 helium vessel to test at DESY and Fermilab 2 of the existing superstructure blade tuner with 2 parallel piezoactuators:
 - in series with the tuning mechanism
 - positioned on the mid plane

Consequences

- Because of the very heavy superstructure tuning mechanism one pad couple was moved closer to the ring supporting the tuner weight.
- A special adaptation element was designed to adapt the new pad position to the standard (TTF-FLASH-XFEL) shape spacing
- A simple adaptation at the end cone region, as for superstructure, was done given that longitudinal stiffness is not so critical.

Real life

 No sufficient priority on ILC and no testing slot available up to 2007 neither at DESY not at Fermilab. New Blade Tuner

Lighter

The redesign of rings allowed an important **weight reduction** (about 40%) maintaining the full symmetry with collinear blades.

Cheaper

The new geometry and mechanism lead to an important reduction of costs.

New driving mechanism

The new driving mechanism is simpler, **cheaper and more compact**, simplifying the installation of an external **magnetic shield**.

Ready for future SS tank

The tuner can be **built both with titanium or stainless steel rings**. We used a high strength alloy for blades to exploit the full tuning capabilities without plastic strains.

Wider tuning range

The different blade geometry adopted **improve the slow tuning capabilities** to more than 1.5mm at the cavity level.

The bending rings

The bending system consists of three different rings: one of the external rings is rigidly connected to the helium tank, while the central one is divided in two halves. The rings are connected by thin plates, the blades, that by means of an imposed azimuthally rotation bend and elastically change the cavity length.

The Piezo Actuators

2 piezo actuators in parallel provide fast tuning capabilities needed for Lorentz Force Detuning (LFD) compensation and microphonics stabilization.

The movement system

The stepping motor, with its harmonic drive and a CuBe screw rotates the central ring

Blade Tuner prototype cold tests

- The Stainless Steel + INCONEL prototype has been tested at cold:
- Sept. 2007 in the CHECHIA horizontal cryostat, DESY
 - Installed on the **Z86 TESLA cavity** equipped with a standard modified He vessel
 - Equipped with a standard TTF unit: Sanyo stepper motor + Harmonic Drive gear
 - 2 Noliac 40 mm standard piezoelectric actuator installed
- Feb. 2008 in the HoBiCaT horizontal cryostat, BESSY
 - The same assembly but equipped with a prototype of a possible alternative driving unit: Phytron stepper motor + Planetary Gear

Stainless Steel + Inconel model (Slim_SS)

Titanium model (Slim_Ti)

The tuner has been installed on the **Z86 TTF cavity** (24 MV/m best E_{acc}) using a "TTF standard" **modified helium tank**, with the insertion of a central bellow to allow the coaxial tuning operation

Z86 integrated in the helium tank at DESY

Z86 during the EB Welding at Lufthansa

Test setup at CHECHIA - DESY

- Blade Tuner cold tests on September 2007
 - Stainless steel + Inconel Blade Tuner
 - 40 mm Noliac piezo (10 x10 mm²)
 - Sanyo-Denki stepper motor, 200 steps/turn
 - HD drive unit, 1:88 reduction ratio
 - therefore 17600 steps each spindle turn (CuBe spindle screw, 1.5 mm/turn) ~ 10 nm/step

Test setup at CHECHIA - DESY

The cavity package is installed on a table

- 2 pads fixed by supporting clamps
- helium tank sliding on a Teflon support,
- beam pipe and coupler supported

The table hosting the cavity and its ancillaries is then moved into the CHECHIA cryostat

- Blade Tuner cold tests, February and April 2008
 - Stainless steel + Inconel Blade Tuner (same as CHECHIA test)
 - 40 mm Noliac piezo (same as CHECHIA test)
 - Phytron stepper motor, 200 steps/turn
 - Phytron VGPL planetary gear, 1:100 reduction ratio
 - therefore 20000 steps each spindle turn (CuBe spindle screw, 1.5 mm/turn)

< 10 nm/step

The cavity package is installed on a table

 Each pad is clamped in a Teflon pillar that can slide on the SS table

The table hosting the cavity and its ancillaries is then moved into the HoBiCat cryostat

Considerations about friction

Superstructure Test setup

Ti pad on rolling needles (Cry 3), 40 kg preload force, T = 77 K:

- Static friction coefficient : 0.0043
- Dynamic friction coefficient : 0.0022

D. Barni, M. Castelnuovo, M. Fusetti, C. Pagani and G. Varisco FRICTION MEASUREMENTS FOR SC CAVITY SLIDING FIXTURES IN LONG CRYOSTATS Advances in Cryogenic Engineering, Vol. 45A, Plenum Publishers, 2000, 905-911

CHECHIA setup

PTFE Teflon on Titanium

• Static friction coefficient : **0.17** (40 times larger than Type 3)

Friction Data Guide (Linden, NJ: General Magnaplate Corp., 1988

HoBiCat setup

PTFE Teflon on Steel

• Static friction coefficient : 0.04 (40 times larger than Type 3)

Friction Data Guide (Linden, NJ: General Magnaplate Corp., 1988

- Frequency tuning data on a μ m-scale come from mode pulsed piezo measurements:
 - pulsed piezo actuation for Lorentz Force Detuning (LFD) compensation
 - actuators are driven by a single half-sinusoidal pulse, with proper time lead toward the RF pulse

Carlo Pagani

LCWS08 & ILC08, UIC, Chicago, 18 November 2008

- LFD exhibited by Z86 cavity, about 300 Hz, has been compensated:
 - Actuating each piezo alone (see plots)
 - Actuating both piezo in parallel

Nominal piezo pulse amplitude for this level of LFD is 60 V +/- 7%

Blade Tuner tests at CHECHIA

- Some considerations about these results. Several parameters are involved in the LFD compensation, anyway we can assume:
 - 300 Hz of dynamic compensated detuning is about 0.75 1 μm of induced dynamic cavity deformation. Longitudinal frequency sensitivity *df/dl* in the range 315 Hz/μm (ILC RDR) to 400 Hz/μm (experimental, FLASH).
 - Static-to-dynamic detuning ratio has been estimated through transfer function based simulations and can be assumed as about 1.2.
 - 60 V on piezo, given the 200 V maximum voltage and it's non-linearity, means about 1/5 of the maximum piezo stroke.
 - Temperature leads to a further stroke reduction: only about 13% available at T = 2 K, about 20-25 % at T = 25 K reached when piezo is operating.
 - Blade Tuner geometry efficiency has been evaluated by means of spring model of the system and it is equal to 83% when both piezo operate in parallel, therefore about 40 % when only one piezo is actuating

Blade Tuner tests at CHECHIA

The piezo assisted blade tuner performed as expected Simulations are confirmed by experimental data

	Only one piezo acting	
Nominal RF stroke at 200 V (max voltage)	60 µm	
Stroke at 60 V	12 µm	
Residual stroke at 25 K	3 μm	
Blade Tuner efficiency	40 % +/-10%	
Static-to-Dynamic ratio	1.2	
Resulting stroke at the cavity	1 μm +/- 10%	
Expected resulting dynamic cavity frequency variation	280 - 350 Hz	
Measured resulting dynamic cavity frequency variation	300 Hz	

Blade Tuner installation in HoBiCaT, BESSY

The same Blade Tuner assembly has been installed for cold testing at BESSY, except for the driving unit, a stepper motor equipped with **planetary gear**

Data about frequency tuning on a μ m-scale come from:

- Piezo actuators static tuning range measurements. Piezo are driven with DC voltage
- Drive unit small range measurements. Stepper motor is driven in a small range around a working point \

- Each piezo actuator alone and also both in parallel have been driven with a DC voltage, the cavity frequency is locked by a PLL and measured.
- No deviation observed from the hysteresis curves expected from piezoelectric properties: no obstacles to the movement of piezo.
- Looking at plots a sub-micron resolution can be observed: 10 V step in piezo driving voltage corresponds to about 0.1 μm at low absolute voltage (where slope is lower)

Carlo Pagani

LCWS08 & ILC08, UIC, Chicago, 18 November 2008

The HoBiCaT piezo tests confirm that the entire stroke expected to be transmitted to the cavity by piezo actuators is achieved:

Consider for example the test with both piezo operated in parallel up to 200 V (table):

	Both piezo acting	
Nominal RT stroke at 200 V (max voltage)	60 µm	
Residual stroke at working T (25%) 15 μm		
Blade Tuner efficiency	83 %	
Resulting stroke at the cavity	13 µm	
Expected resulting static cavity frequency variation	4.1 – 5.2 kHz	
Measured static cavity	5 1.11-	

Some backlash from Gear Box

- Drive unit small range tests: the stepper motor has been driven iteratively in the range +/- 60 steps around the working point, by steps of 6 motor steps.
- The tuning effect on cavity of a single bunch of 6 motor steps, about 60 nm or 6/20000 of a spindle turn, is visible.

• As expected some backlash noise from gear box is visible

tuning characteristics around a specific working point

The frequency positioning behavior and the amount of **backlash, about 85 steps**, is slightly higher than the one usually experienced with TTF tuner.

But the planetary gear installed, here tested for the first time, actually introduces a significantly higher backlash if compared to HD gear, about 20 times higher

The ILC Blade Tuner

On the basis of the test results here presented the ILC Blade Tuner prototype is already close to fulfill all the XFEL and ILC specifications.

The experience gained with the cold tests on the so called 3.0.0 prototype has been used for the final revision of the Blade Tuner, currently under construction.

The first 8 units for Fermilab have been produced and 2 more are under construction.

Geometry of the revised tuner 3.9.4

the piezo positions correspond to the double blade packs: as seen these packs withstand an higher load and therefore they were doubled.

Chicago, 18 November 2008

Carlo Pagani

.

operating conditions

	Pressure			Temp.	Max load ¹
Condition	Beam pipe	He tank	isovac	cavity	tuner
	mbar	mbar	mbar	К	Ν
Start	1000 - Ar	1000	1000	300	0
Piezo preloaded	1000 - Ar	1000	1000	300	-2200
Ready to cool down	0	1000	1000	300	-3116
Cool down	0	2000	0	300 to 4	+4815
Stable 1.9 K	0	20	0	1.9	-2150

ASME / PED check

For PED to be multiplied by 1.43

	Pressure			Temp.	Max load	
Condition	Beam pipe	He tank	isovac	cavity	Tuner	
	mbar	mbar	mbar	К	Ν	
Emergency	0	4000	0	300	+9630	
Leak test	0	0	1000	300	-2840	

Design analysis – whole tuner

Possible failure modes for the revised Blade Tuner have been studied through a complete 3D FE model in order to evaluate its limit loads In these analyses the tuner is at 0 screw turn position

Collapse at 11.6 kN

Buckling at 17.6 kN

Carlo Pagani

LCWS08 & ILC08, UIC, Chicago, 18 November 2008

Tuner under construction (3.9.4)	Tuner characteristics	Required value	Margin factor
Tuning range - nominal (no hysteresis)	0 – 500 kHz		
Tuning range – max. (some hysteresis <u>1</u>)	0 – 600 kHz		
Max compression strength ²	7800 + 3100 N	0 + 3100 N 7800 + 1.1 * 2840 N	
Max traction strength	16000 N	13771 N	1.16
Compression stiffness	15 – 100 kN/mm		
Mean freq. sensitivity	1.5 Hz/half-step - XFEL standard drive unit -	~ 0.75 Hz/half-step	
	0.75 Hz/half-step - devoted 1:200 gear -	- actual TTF I tuner sensitivity -	
Max. torque at the CuBe screw	12.5 Nm - XFEL standard drive unit -	2 4 Nm	5.2
	25 Nm - devoted 1:200 gear -		10.4

<u>1</u> With some plastic deformations at worm, limited to the blade packs near the motor

2 This is composed of the fixed part due to the cavity deformation and a variable part due to external pressure

- The INFN proposed position is fine
 - Maintain the plug compatibility with FHASH-XFEL cavities
 - Produce a negligible static deformation of 0.13 mm
 - No backlash on the rollers (superstructure data)
 - Easy and proven assembly procedure

- Moving the bellow at the tuner center the sag increases to 0.16 mm
- No need to move the tuner outside the pads. It just add complexity and cost (end group-He Tank connections, cantilever effect, etc.)

Fig. 3: maximum cavity displacement $vs\;d_3$ and d_4

Carlo Pagani

LCWS08 & ILC08, UIC, Chicago, 18 November 2008