

ILC polarized Electron Source R&D Update

LCWS 2008

A. Brachmann, J. Sheppard, F. Zhou - SLAC National Accelerator Lab –

> M. Poelker - Jlab -

- Reminder: Parameters and Layout
- Source Drive Laser System R&D
- DC Gun R&D

ilr

İİL

- Polarized Cathode R&D
- Other relevant R&D

Parameters

Parameter	Symbol	Value	Unit
Electrons per bunch (at gun exit)	n _e	3*10 ¹⁰	Number
Electrons per bunch (at DR injection)	n _e	2*10 ¹⁰	Number
Number of bunches	N _e	~ 3000	Number
bunch repetition rate	Γ _{μb}	3	MHz
bunch train repetition rate	F _{mb}	5	Hz
bunch length at source	Δt	2	ns
Peak current in bunch at source	lavg	3.2	Α
Energy stability	S	< 5	% rms
Polarization	Ре	80 (min)	%
Photocathode Quantum Efficiency	QE	0.5	%
Drive laser wavelength	λ	780-810 (tunable)	nm
single bunch laser energy	E	5	μJ

November 17, 2008

---ilc

GeV Electron Source Systems

Source Drive Laser R&D

November 17, 2008

ilr

Pulse stretcher 250 fs \rightarrow 500 ... 1000 ps

Cryogenic Regenerative Amplifier

• Electro optic crystals are also piezo - electric crystals!

$$\Delta \phi = \left(\frac{2\pi L}{d}/\lambda\right) [-n^3 r_3/2 + (n-1)d_{13}]E_3$$

electro-optic coefficient inverse piezo-electric coefficient

- At high kHz to MHz rates, piezo-electric resonances occur
 - Resonance at the 'wrong' frequency leads to unusable Pockel's cell
 - Catastrophic damage of crystal itself

Nickel et al., Rev Sci Instr. 76, 033111 (2005)

ilc

Successful 3 MHz pulse switching

IC OC Gun Development at Jlab

Currently developing a 200kV gun Joint with ILC (CEBAF synergy) Inverted ceramic insulator

medical x-ray technology, no exposed HV, no SF6, field emission not likely to accumulate on insulator

ILC e-Gun Deliverables

- 2009 Reliable 200kV load locked gun
 - Tested at high average current at Injector Test Cave
 - Installed at CEBAF, schedule willing
 - Cathode/anode optic designed for low bunch charge.
- 2010 Progress towards ~ 350kV design
 - There is at least one 350kV gun in operation...
 - Clear road map identifying technological challenges that must be solved, e.g., field emission, insulator high voltage breakdown
 - Build electron-optic model of ILC "front end" (Parmela and/or GPT), suitable cathode/anode design for high bunch charge with reasonable match to subharmonic buncher(s) and warm-RF injector

ILC e-Gun Deliverables

- 2011 Reliable ~ 350kV load locked gun...
 - Operating at ILC beam specifications at Injector Test Cave (laser from SLAC?). Verify adequate lifetime and beam quality.
 - Fine-tune gun/injector design using technique of multivariate optimization, for beam to the end of the 6GeV injector, perhaps to the damping ring

Photocathode R&D

InAlGaAs/AlGaAs - ~85% Spin Polarization

See talk by F. Zhou 'Polarized Cathode R&D update and PESP2008 Summary'

111

Other relevant work

- Polarized RF gun developments (partially SBIR projects)
 - SC polarized RF gun (BNL)
 - PWT gun (Duly Research)
- Cathode R&D SBIR's
 - Innovative activation techniques (SAXET surface science, SLAC)
- Laser System development SBIR(II)
 - Kapteyn-Murnane Labs

ilr

- R&D is being carried out despite funding challenges
 - Laser system development
 - Cathodes
 - Guns

ilr

 Proof of principle of ILC source is anticipated within ~ 2 years.