

Cryomodule Helium Vessel Pressure -- a Few Additional Comments

Tom Peterson 18 November 2007

Update of Oct 2007 Comments

- October, 2007, slides summarizing helium vessel pressure issues are appended here
- We should review helium vessel maximum pressures in light of DESY "crash test" and pressure tests
- We should review vacuum vessel venting in light of LHC magnet vacuum space overpressure incident

Crash and pressure test comments

- 2 bar warm and 4 bar cold maximum differential pressures (MAWP) were an initial compromise choice
 - 2 bar warm for cryogenic operation
 - 4 bar cold to accommodate worst-case loss of vacuum pressure rise
- DESY crash test slow pressure development at 2 K with maximum of about 2.5 bar
 - 4 bar MAWP looks conservatively high
 - Still need to evaluate maximum pressure with venting path from string of cryomodules
- Pressure test indicates possibility of one pressure rating -- 4 bar warm or cold

Means pressure testing at around 5 bar warm

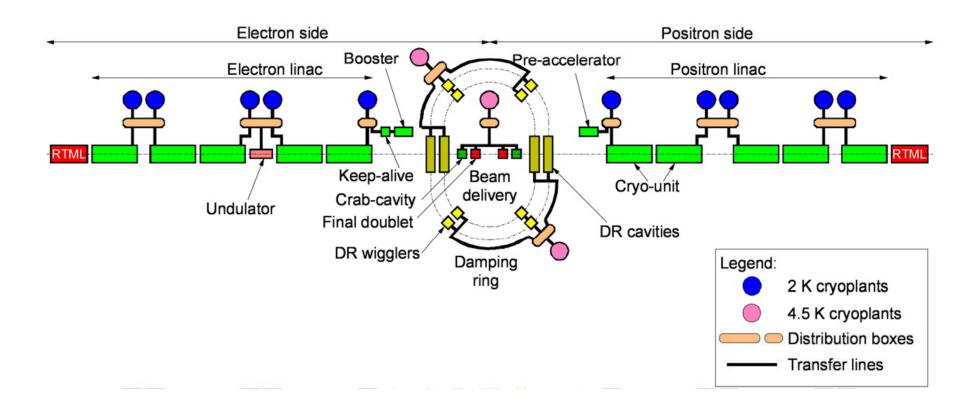
Vacuum vessel venting

- Can LHC-type accident occur in SRF string?
- LHC (my unofficial account of the events) -- electrical arc, rupture of 2 K helium bellows and release of helium into insulating vacuum space at LHC
 - LHC magnets quenched into insulating vacuum space
 - Pressure starts at about 1.2 bar nominal
 - Flow driven by higher pressure from magnet string quench
 - In contrast, 2 K RF system starts at 30 mbar
 - 2 K RF system does not have the stored energy of a magnet system
 - LHC high pressure (~16 bar) thermal shield line also subsequently ruptured into vacuum space
 - Several sources of pressure due to rupture of several lines
 - Magnet motion due to pressure in vacuum space

ILC vacuum vessel venting

- Low pressure and low stored energy in 2 K part of SRF system
- However, ILC concept includes high pressure shields
 - 18 20 bar is current plan, but pressures need to be evaluated with cryogenic plant cycle
 - In any case, shield pipe up to 80 mm ID, so potentially very large flow into vacuum space
- Cryomodule strings will require large and frequent vacuum relief ports
 - Need to evaluate path to relief port (through thermal shields, not blocked by MLI, etc.)
 - XFEL is also re-evaluating vacuum space venting requirement

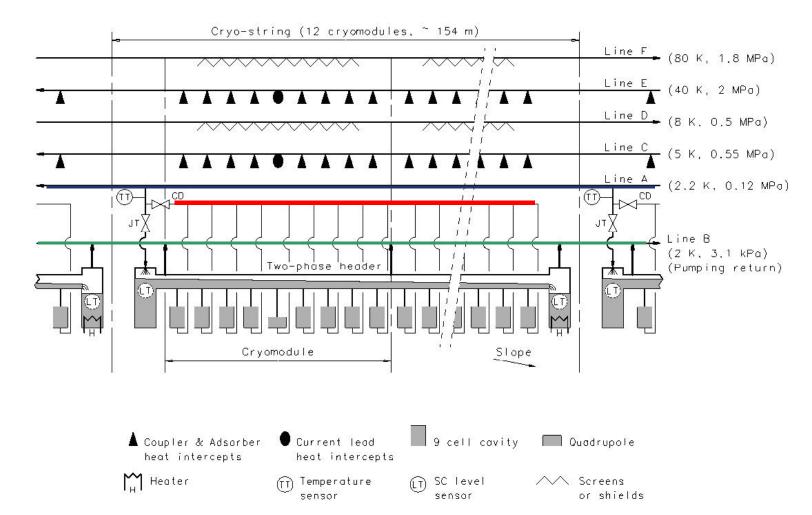
ilr


ÌİĹ

Reference slides

From October, 2007

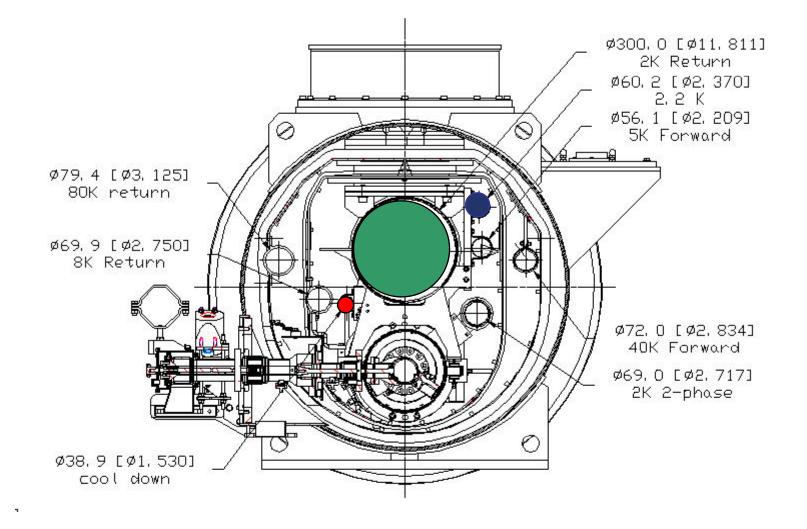
Cryogenic plant arrangement



Causes of pressure excursions

- Worst case location is probably always the cavity helium vessels in the string 2.4 km from the cryogenic plant
- Purification and cool-down flow
- Warm-up flow
- Compressor failure (e.g., power outage)
- Control and/or valve failures
- Loss of insulating vacuum while cold
- Loss of cavity vacuum while cold

A cryogenic "string"



18 Nov 2008

He pressure excursions

Type 4 cryomodule pipe sizes

Pipe size summary as of July 07

Pipe function	BCD name	TTF inner diameter (mm)	XFEL plan inner diameter (mm)	ILC and T4CM proposed inner dia (mm)	ILC allowed pressure drop
2.2 K subcooled supply	A	45.2	45.2	60	0.10 bar
Major return header, structural supp't	В	300	300	300	3.0 mbar
5 K shield and intercept supply	С	54	54	56.1	
8 K shield and intercept return	D	50	65	70	0.20 bar (C+D)
40 – 80 K shield and intercept supply	E	54	65	72	
40 - 80 K shield and intercept return	F	50	65	80	1.0 bar (E+F)
2-phase pipe		72.1	>72.1	72.1	
Helium vessel to 2-phase pipe cross-connect		54.9	54.9	54.9	

Purification and cool-down

300 mm pipe, 2.5 km long 1.5 bar, 300 K 60 mm pipe, 2.5 km long 20 bar, 300 K

Mass flow Pressure drop		

- XFEL paper states that the 2.2 K supply line limits flow, confirmed above
 - Numerical simulations for the cooldown of the XFEL and TTF superconducting linear accelerators by K. Jensch, R. Lange, B. Petersen
- Appears to be less than 0.1 bar delta P in line B for all possible warm flow conditions as limited by line A.

- Suction pressure rises to the suction relief valve settings
 - Pressure sits at the suction relief pressure while helium vents
 - Unlike higher pressure reliefs, helium must vent outside of system
 - Large loss of helium inventory
 - Low pressure volume of 210,000 liters per cryogenic unit
 - However, each 0.1 bar helium = only about 26 liquid liters equiv
 - Need relief set pressure safely above anticipated operating pressures to avoid accidental, unnecessary, loss of helium

ilc iic

Peak warm pressure

- Compressor suction set pressure
 - 1.2 bar
- Control margin
 - +/- 0.2 bar
- Relief set pressure margin
 - 0.3 bar (a judgment here, would like 0.5 bar)
- Suction relief set pressure
 - 1.7 bar
- Pressure drop from far string
 - 0.1 bar
- Peak warm pressure
 - 1.8 bar (note that 0.5 bar set P margin ==> 2.0 bar)

Cold peak pressures - 1

- Loss of vacuum to air
 - "Safety Aspects for the LHe Cryostats and LHe Containers," by W. Lehman and G. Zahn, ICEC7, London, 1978
 - "3.8 W/sq.cm. for an uninsulated tank of a bath cryostat"
 - "0.6 W/sq.cm. for the superinsulated tank of a bath cryostat"
 - "Loss of cavity vacuum experiment at CEBAF," by M.
 Wiseman, et. al., 1993 CEC, Advances Vol. 39A, pg 997.
 - Maximum sustained heat flux of 2.0 W/sq.cm.
 - LEP tests and others have given comparable (2.0 to 3.8 W/sq.cm.) or lower heat fluxes
 - Film boiling of helium with 60 K surface is about 2.5 W/sq.cm.

<u>ilr</u>

İİL

Cold peak pressures - 2

- Relief pressure will be suction relief set pressure (for example, 1.7 bar)
- Heat flux of 10's of KW to liquid helium
- Mass flows of many kg/sec
- Pressure drops to vent may result in peak pressures of 3 - 4 bar locally
- TTF, TESLA, and XFEL analyses have been done
- Fermilab has done analyses of single cavity systems

;lr

ÌÌĹ

Cold peak pressures in TTF/ILC

- Analyses of TTF and TESLA back in the early 1990's indicated that worst-case loss of vacuum might lead to pressures near 4 bar cold
- Also have recent XFEL analysis (need to find, but comparable results, no more than 4 bar)
- Input parameters
 - Heat flux as limited by
 - Rate of air inleak
 - Suface heat transfer
 - Total surface area involved
 - Can be limited by vacuum breaks, fast valves
 - Initial conditions
 - Note that 4.5 K just after filling is the worst case!

Ongoing work

- Analyses already done for single-cavity system
 - Include FEA of helium vessels
 - Include venting and pressure drop calculations
- Working on full cryomodule pressure analysis now
 - Needed for ILCTA-NML
 - Cryogenic end boxes on order
- Engineers are working on helium vessel design for pressure containment with low stress (Fermilab and INFN)
 - End group stresses and design
 - Bellows stresses design
 - Tuner loads, stresses, and design
 - RF cavity stresses
- Venting and pressure limits are a cryogenics WP

Pressure tests

- DESY will do cold vacuum loss studies of a cryomodule at CMTF
- Labs could do warm tests of pressure effect on cavity tune
 - What pressure warm results in some permanent detuning, some yielding
 - Do not yet see from analyses what is yielding at 2 bar -- should validate analytical models
- Labs could do cold tests
 - Sequentially pressurize at 5 K, reduce pressure and test at 2 K, (perhaps 4.2 K?), etc.