ONE YEAR OPERATION OF THE EUDET CMOS PIXEL TELESCOPE

Ingrid-Maria Gregor for the EUDET Consortium

Outline

- The Telescope
- Performance
- Users
- Outlook

LCWS08 November 16-20, 2008 University of Illinois at Chicago

EUDET STRUCTURE

- Validation of simulation
- Deep submicron radiation tolerant electronics

TELESCOPE REQUIREMENTS & SCHEDULE

GENERALLY APPLICABLE:

- Main use from small pixel sensors to larger volume tracking devices (TPC)
- Movement of device under test (DUT) to scan larger surface
- Large range of conditions: cooling, positioning, (magnetic field)
- Easy to use: well defined/described interface
- Very high precision: <3 μm precision even at smaller energies

PHASE1: "DEMONSTRATOR"

- First test facility will be available quickly for the groups developing pixels
- Use established pixel technology with analogue readout and no data reduction

PHASE2: FINAL TELESCOPE

- Use pixel sensor with fully digital readout, integrated Correlated Double Sampling (CDS), and data sparsification
- The beam telescope will be ready early 2009

TELESCOPE INGREDIENTS

REFERENCE PLANE SENSORS

DEMONSTRATOR: MIMOTEL

- AMS 0.35 OPTO process with 14 and 20µm epitaxial layer
- 4 sub-arrays (64 × 256 pixel)

400

- $30 \times 30 \,\mu\text{m}^2$ pitch: active area: 7.7 \times 7.7 mm²
- readout : 1.6 ms (4 analog output nodes at 10 MHz)
- pixel designed to stand >1 MRad at room temperature
- Available for community since February 2007

Entries

6558

IPHC Strasbourg

DAQ INTEGRATION CONCEPT

- How to integrate the DUT hardware with the JRA1 beam telescope?
 - different groups with different detector technologies and different, pre-existing DAQ systems
- Use completely different hardware and DAQ for the DUT and the telescope
- Two levels of integration possible:
 - "easy" solution: at trigger level
 - OR
 - full integration on DAQ software level

DAQ HARDWARE

EUDET DATA REDUCTION BOARD

Mother board built around an ALTERA Cyclonell FPGA (clock: 80MHz) and hosting the core resources and Interfaces (VME64X slave, USB2.0, EUDET trigger bus)

NIOS II, 32 bit "soft" microcontr. (40Mz) implemented for

- on board diagnostics
- on-line calculation of pixel pedestal and noise

INFN Ferrara

remote configuration of the FPGA via RS-232, VME, USB2.0

Zero Suppressed readout to minimize the readout dead-time while in normal data taking.

Non Zero Suppressed readout of multiple frames for debugging or off-line pedestal and noise calculations

- Two handshake modes
 - Simple handshake
 - Trigger data handshake
- Timestamp and event-number via USB
- Available interfaces: LVDS via RJ45, NIM and TTL via Lemo
- Inputs for four trigger signals
- Internal trigger mode for testing
- Low voltage power supply for PMTs

AND SOFTWARE-WISE

- Platform independant (MacOSX, Linux, Windows)
 - Object oriented, distributed and multithreaded
 - Highly modular, but light-weight
 - DAQ Software is divided into many
- parallel tasks:
 - RunControl to steer the task
 - several Producer tasks read the hardware
 - one DataCollector task bundles events, writes to file and sends
- subsets for monitoring
 - Several Online Monitoring tasks
 - Logger task allows to see what is going on

HTTP://PROJECTS.HEPFORGE.ORG/EUDAQ/

We help you with the integration of your DAQ!

DPNC Geneva

EUDAQ RUN CONTROL

Provides powerful online monitoring

TELESCOPE MECHANICS CONCEPT

DESY Hamburg

- Box 1 and 2:
 - movable in z-direction, optical bench for three reference planes
 - distances between planes are variable from 5 to 150 mm
- DUT position:
 - Gap between Box 1 and 2: variable in size from a few cm up to 50 cm
- Optical benches inside box ease adjustment with respect to the beam

THE REAL THING

- Overall mechanics now rather big as we allow the insertion of rather large DUTs (e.g CALICE) with a size of up to 50cm
- mechanical profiles give the system a good flexibility while keeping a stable mechanics

 Rotation of generell telescope plane versus the beam axis (few degrees) to ease the adjustment with respect to the beam

ANALYSIS AND RECONSTRUCTION SOFTWARE

EUTelescope:

- Set of relevant high level objects (like tracks or space points) to characterise the DUT
- Histograms of important figures of merit.
- Based on available/tested software tools:
 - Single sensor analysis → sucimaPix (INFN)
 - Eta function correction → MAF (IPHC)
 - Track fitting → Analytical track fitting and straight line fitting
 - Alignment → Millepede II
 - Framework → ILC Core software = Marlin + LCIO + GEAR + (R)AIDA + CED
- Sticking to the ILC de-facto standard offers the possibility to easily use the GRID
- Each module is implemented in a Marlin processor
- execute all of them together, or stop after every single step

TEST BEAM CAMPAIGN

DATE	ВЕАМ	SCOPE	
06/07	DESY 6GeV e ⁻	First run with all components and integration in beam	
08/07	DESY 6GeV e ⁻	detailed studies	
09/07	CERN SPS	180 GeV hadrons, first user - DEPFET	
12/07	DESY 6GeV e ⁻	User: BeamCal	
05/08	CERN SPS	User: SiLC	
07/08	CERN PS	User: CALICE	
07/08	CERN PS	User: DEPFET	
08/08	CERN SPS	User: MimoRoma	
08/08	CERN SPS	User: DEPFET	
08/08	CERN SPS	User: ISIS	
09/08	CERN SPS	EUDET studies	

PERFORMANCE OF THE TELESCOPE

ALIGNMENT

- The alignment procedure based on MILLEPEDE II uses full tracks
- Typical values for the alignment constants
 - X and Y shifts: few 100μm
 - Rotation around beam axis: few mrad

Plane	Residuals X	Residuals Y
	average value [µm]	average value [µm]
0	-0.003 ± 0,002	$-0.023 \pm 0,002$
1	-0.015 ± 0.004	0.036 ± 0.005
2	0.032 ± 0.004	0.005 ± 0.005
3	-0.020 ± 0.004	-0.005 ± 0.005
4	0.001 ± 0.002	0.002 ± 0.002

(3 GeV electrons at DESY)

Precision of alignment better than 0.05 μm!

PERFORMANCE OF THE TELESCOPE

RESOLUTION WITH HADRONS

- With hadrons-> neglect multiple scattering
- Straight line fitting procedure using four planes only and extrapolating on the central one
- Fitting on x and y independently
- $\chi^2 \, \text{cut} < 20$

$$\sigma^2 = \sigma_{\rm DUT}^2 + \sigma_{\rm Tel}^2 + \varkappa_{\rm MS}^2$$

15

EFFECT OF ZERO SUPPRESSION

- Resolution (ZS) at hadron beam:
 - x: 3.33 μm + 0.01 μm
 - Y: 3.48 μm + 0.01 μm (both with η correction)
- RAW : 3.3 μm
- Too good to be true

USER: FCAL AT DESY

- Wanted to determine the charge collection efficiency of diamond detectors precisel
- The use of the EUDET telescope gave the possibility to define a fiducial area in the centre of the crystal to avoid edge effects

USER: SILC AT SPS

- Silicon strips for ILC
- Evaluate the best strip geometry of silicon strip sensors with 50 micron pitch to achieve the highest possible spatial resolution
- collected about 1.5M events in several configurations

- Analysis still under way
- Problems with synchronisation of DUT and EUDET telescope

USER: CALICE - DHCAL AT PS

- to validate a new concept of a digital hadronic calorimeter for ILC
- sampling calorimeter constructed as a sequence of stainless steel absorbed plates and planes of gaseous detectors with high granularity and digital readout
- Gaseous detectors: GRPC and μMEGAs
- Readout: based on hardroc chip

- study the efficiency and cross-talk in diff. beam conditions
- different gas mixtures and different high voltage values to optimise the detector response

USER: DEPFET AT PS AND SPS

- At PS DEPFET efficiently worked on all little details for the user integration
- At SPS the main goal was measurements of efficiency, purity and intrinsic resolution
- DEPFET included on DAQ level -> own producer within EUDAQ -> one data stream
- 1 Million events as EUDET DUT !

Control		cut	aq kun com	
Config: Run: Log:	depfet	_and_tel_zs	Prost	Config Start Log
	<u> </u>		Reset	
Status				
Run Number: (4944)		Rate:		
Triggers: 0		0	Mean	Rate:
Events Built:			File Bytes:	
Connect	ions			
type	*	name	state	connection
DataCollector		OK	127.0.0.1:53884	
LogCollector		OK	127.0.0.1:53881	
Monitor Root		OK	127.0.0.1:53891	
Producer EUDRB		OK	129.194.55.111:32803	
Produce	er	TLU	OK	129.194.55.245:33211
Producer DEPFET		OK	127.0.0.1:53888	

Correlation plots in EUDAQ Root Monitor

DEPFET IMPLEMENTED IN EUTELESCOPE

DAQ integration to EUDET Telescope system (via RunControl, DQM, DATA merging on a DAQ and offline level) is done.

USER: ISIS AT SPS

- Self contained telescope @ DESY provided useful information
- Charge collection efficiency, charge sharing, hit-efficiency as function of position
- Standard and "p-well variant" of ISIS was tested

- Tracking and alignment sofware works
- Both standard and p-well ISIS performed okay
- Tracks in EUDET telescope and correlated hits in ISIS
- Alignment of ISIS sensor to telescope rather tricky (0.5 x 2mm)

FINAL TELESCOPE CHIP: MIMOSA26

AUTUMN 2008 : FABRICATION OF MIMOSA-26

= FINAL SENSOR

- Mimosa-22 (binary outputs) complemented with zerosuppression (SUZE-01)
- best performing (rad. tol.) pixel architecture of MIMOSA-22
- Active surface : 1152 columns of 576 pixels (21.2 x 10.6 mm²)
- Pixel pitch : 18.4 μ m -> 0.7 million pixels -> σ_{sp} <3.5 μ m => pointing resolution 2 μ m on DUT surface
- Integration time ~110 μs -> 10⁴ frames / second
- Chip dimensions : ~21 x 12 mm²
- Data throughput: 1 output at 80 Mbits/s or 2 outputs at 40 Mbits/s

OUTLOOK

- The demonstrator can be used at DESY until spring 2009
- Small changes planned in mechanics and cooling
- A high resolution plane (Mimosa18) was added for further improvement (data taking in December 2008)
- Spring 2009 the telescope will be upgraded to a full digital readout by introducing Mimosa26
- Then a faster well tested telescope will be available for the community
- Transport to CERN for the test beam season is planned for July 2009

WHAT DO WE OFFER TO USERS

- The analysis and reconstruction software.
 - As for the DAQ, you can rely on our output track file, or integrate your device in the main analysis stream.