Column Parallel CCD and Raw Charge Storage Pixels by LCFI

Andrei Nomerotski, University of Oxford

for LCFI collaboration

LCWS2008, 17 November 2008

Outline

- Column Parallel CCD
 - Sensor: CPC2
 - Readout ASIC : CPR2A
 - ◆ CPCCD with reduced capacitance : CPC-T
- Raw charge storage pixels: ISIS2

CPCCD Sensor: CPC2

- High speed (busline-free) devices with 2-level metal clock distribution
- Whole image area serves as a distributed busline
- Designed to reach 50 MHz operation

Tests of high speed CPC2

- Need CPD1 driver chip to drive high speed CPC2
- Assembled several CPC2-10 and CPC2-40 with CPD1
- CPC2 noise performance ¹⁴⁰ optimized using CPD1 ¹²⁰ handles ¹⁰⁰

80

60

40

20

2

2.2

2.4

2.6

clock voltage/V

2.8

3

noise/e-

- # CPD1 sections
- Clock voltage

3.2

3.4

Maximum Frequency

- Low noise operation up to 30 MHz for CPC2-10
 - ◆ 50 MHz within reach
- Limited by substrate bounce effects
 - Clock pickup at analogue outputs, need to measure amplitude on fast transients
 - ♦ Happens inside CPC2

Readout Chip for CPCCD: CPR2A

CPR2A Tests

- Tests started in March 2008
- Simultaneous operation of analogue inputs and cluster finder demonstrated for both voltage and charge amplifiers
- Plot: analogue performance with and without asynchronous cluster finding
 - Charge amplifiers did not work in CPR2

TRANSFER CHARACTERISTIC OF CHARGE CHANNEL

CPR2A Cluster Finding

- 2x2 seed cluster
- 4x6 (min size) clusters buffered inside CPR2A
- Cluster finding can be tested both with digital and analogue inputs
 - Software/firmware effort to code input calibration clusters and analyse data
- Performs up to specs

Miroslav Havranek, RAL

CPR2A Cluster Finding

- Errors analysed for random distribution of cluster locations
 - No errors till 0.2% occupancy
 - Most frequent error is loss of time stamp

ERRORS VS OCCUPANCY

• Overall CPR2A performance is quite impressive and it is ready for CPC2

Andrei Nomerotski

CPCCD with reduced capacitance and reduced clock voltage: CPC-T

CPC-T

- Two-fold goal : lower V and lower C
- Two designs based on CPC2 to study very low inter-gate barriers and clock amplitudes
- Six designs for reduction of the inter-gate capacitance:
 - Pedestal CCD (on 20 μm and 24 μm pitch)
 - Shaped Channel CCD (variant of Stored charge the Pedestal CCD), on 20 µm
 and 24 µm pitch
 - Open Phase CCD
 - "Inter-channel gap" CCD
- Pedestal designs could reduce Cig by a factor of 2-4, open phase by ≈2

CPC-T

- 6 CPC-T wafers delivered in March 2008, one of each type
 One type (stepped nitride barrier) failed for complete wafer
 - One type (stepped nitride barrier) failed for complete wafer

CPC-T Tests

- 24 variants to test a lot of work
- 4-phase CCD used to determine the minimal clock amplitude
 - Look at CTI as function of gate potentials
 - OPV is voltage difference between two gates of the same phase, emulates implant for 2-phase devices
- 50 MHz operation is no problem
 - Small device small C
 - But need higher clock voltage
 - Smaller operational OPV range

Next generation ISIS: ISIS2

- ISIS2 manufactured by Jazz Semiconductor
- Process: 0.18 µm with dual gate oxide
 - p++ wafers with 25 μ m epi layer $\rho > 100$ Ohm cm
- Process enhancement for LCFI: buried channel and deep p+ implant
 - Buried channel is necessary for raw charge storage
 - Deep p+ protects buried channel from parasitic charge collection
- Cross section :

ISIS2 Design

S.Thomas, P.Murray, K.Stefanov, RAL

- Pixels 80 x 10 μ m²
- Imaging pixels $40 \times 20 \ \mu m^2$
- Buried channel 5 µm wide
- CCD gates: doped polysilicon, non-overlapping
- Logic, source followers use 5V custom logic gates, 3 metal layers

- ISIS2 Design
 One chip will have several variants of ISIS2
 - Each has independent control
- Row select and decoder edge logic
- Area 1 cm² (four $5x5 \text{ mm}^2$ tiles)
- Submitted in May 2008, delivered ${\color{black}\bullet}$ last week, being packaged

Summary

- CPCCD demonstrated
 - Operation at 45 MHz, low noise operation at 30 MHz
 - Operation with readout chip CPR2 at 9 MHz, new chip CPR2A is a success
 - ◆ Improved CPCCD, CPC-T, are under test
- Raw charge storage demonstrated
 - Proof of concept ISIS1 tested in beam
 - Started testing of ISIS2 based on 0.18 um CMOS process
- Future of UK silicon pixel R&D :

New proposal SPIDER (Silicon Pixel DEtector R&D)

- Continue ISIS program
- Develop MAPS based on 4T process and INMAPS process (deep p+ protective layer)