

Cornell University Laboratory for Elementary-Particle Physics

CesrTA Low Emittance Tuning Overview

D. Rubin, Cornell University LCWS-08

- Machine Layout
 - Reconfiguration of CESR for low emittance operation is complete, including

Status

- Removal of IR (low β) quadrupoles and CLEO solenoid
- Redeployment of damping wigglers to zero dispersion straights
- Optics
 - Stored beam in high tune, low emittance optics ($\varepsilon_x = 2.6 \text{ nm}$)
 - Established efficient injection of both electrons and positrons
- Survey
 - Network of reference monuments has been established
 - Dipole rolls $< 300 \mu rad$
 - Quadrupole vertical offset, $\sigma \sim 125 \mu m$
 - Quad movers permit rapid and precise adjustment of vertical offset

- Analysis tools
 - Gain mapping software:
 - determine gain of individual BPM buttons by fitting to measured orbits
 - ORM analysis software
 - Fit orbit, dispersion, phase, coupling data simultaneously
 - ultimately to determine BPM tilt and shear
 - Betatron phase/coupling measurement and analysis/correction software
 - Software for analysis of zero corrector orbits beam based alignment of quadrupole offsets and dipole rolls

Status

- Dispersion measurement orbit difference, and phase-amplitude measurement of synchrotron oscillation
- CESR control system (VMS) networked with linux cluster so that we can run all of the measurement and analysis software on fast CPUs
- Instrumentation (various stages of development)
 - Beam size monitors
 - x-ray imaging measurement of positron beam size with few micron resolution in January 09
 - Measurement of peak valley ratio of vertically polarized visible synchrotron light
 - Beam position monitors
 - Bunch by bunch/turn by turn BPM electronics

- Optics
 - Restore low emittance optics
 - Iterate phase/coupling/orbit measurement and correction
- BPM characterization
 - Gain mapping and ORM measurements and analysis
 - Installation of new BPM electronics over the course of the run
 - (BPM characterization will be a bit of moving target and an opportunity to exercise analysis tools)

Plan for January 09 run

- Low emittance tuning
 - Correction of quad offsets and dipole rolls based on analysis of zero vertical corrector orbits (survey crew standing by)
 - Measurement and correction of vertical dispersion using
 - Vertical steering (~60 correctors)
 - Sextupoles (78)
 - skew quadrupoles (16)
 - Real time feedback from xBSM → real time tuning of vertical emittance using closed orbit, dispersion, and coupling bumps
 - Measurement of dependence of lifetime on bunch current and beam size
 - Low emittance tuning promises to be very labor intensive and we look forward to the participation of our collaborators in the next run