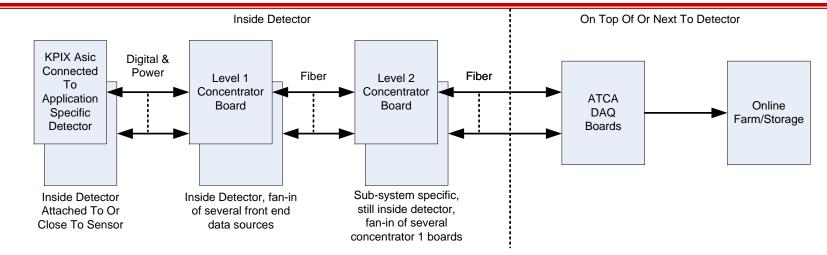
ILC SiD DAQ

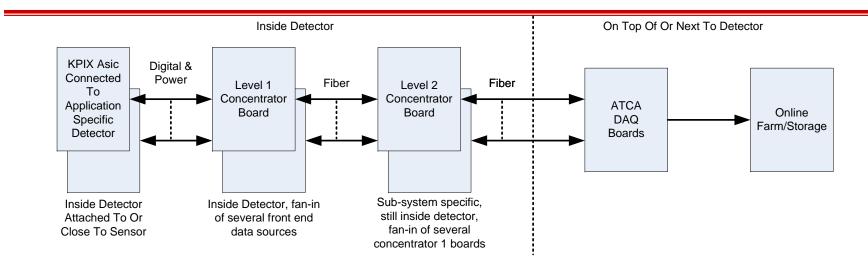
Gunther Haller

SLAC National Accelerator Laboratory Stanford University haller@slac.stanford.edu



LCWS 2008 November 18, 2008

Overview Of Front End

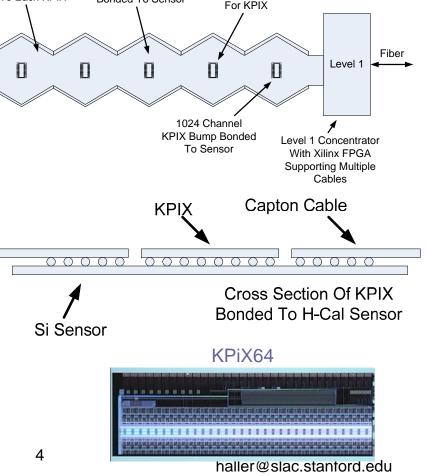

- * Front-end
 - KPIX ASIC electrically connected to sensor
 - •
 - Die bump bonded directly to Si based sensors (ECAL & Tracker) Packaged die with short cables for other sensor types (HCAL & Muon)
 - Other non-KPIX sensor front-end electronics
- * Interface from front-end
 - Serial LVDS
 - Clock, Reset, Data-In, Data-Out
- * Level 1 concentrator (inside detector) provides services for front-end
 - Configurable clock generation
 - External trigger generation (diagnostics)
 - Outgoing serial command stream generation
 - Incoming data stream processing including zero suppression & timestamp sorting
 - Power conversion
 - Interfaces to level 2 or ATCA crate via high speed fiber optic link

ILC SID DAQ LCWS 2008

G. Haller haller@slac.stanford.edu

Overview Of Front End con't

- * Level 2 concentrator combines data streams from multiple level 1 concentrators
 - Required when level 1 output does not fully saturate fiber optic link
 Provide second level of timestamp sorting
 Either inside or outside detector depending on sub-system
- * ATCA based processor board to process and switch data packets — Interface to control system & online storage


 - Outside detector

- 1,024-channel KPIX ASIC application for front-ends of ECAL/HCAL/Tracker/Muon systems presented in talk in this mornings DAQ session (R. Herbst)
 - Example below for ECAL Capton Cable For Signal Cable Bump Cutout In Cable & Power To Each KPIX Bonded To Sensor For KPIX Level 1 Ο Ο Ο Ω Ο Ο Π Π Π Π Π Π 1024 Channel KPIX Bump Bonded
- ~12 KPIX bump-bonded to detectors mounted to a cable
- * Cables routed to each end of the detector
- Cable provides command, clock, reset, test trigger, data readout, power & detector bias
- * Concentrators at the ends of the cables combining data from several cables

ILC SID DAQ LCWS 2008

*

Data-Rates

- * Question is what are the data-rates coming from each sub-system?
 - Influences architecture for readout
- * Assume zero-suppression of data towards the front-end (ASIC's or concentrator 1 board)
- * See table on next slides
 - Mostly driven by noise or background hits

Sub-System	Mean # Hits/Train	#of bytes/hit at level 0	Bandwidth (bits/sec) (5 trains/sec)	
Tracker Barrel	2*10 ⁷	18*	15G	
Tracker Endcap	8*10 ⁶	18*	6G	
EM Barrel	4*10 ⁷	8	13G	
EM Endcap	6*10 ⁷	8	20G	
HAD Barrel	2*10 ⁷	8	6G	
HAD Endcap	4*10 ⁶	8	1.3G	
Muon Barrel	1*10 ⁵	8	32M	
Muon Endcap	1*10 ⁵	8	32M	
Vertex			10M (dominated by layer 1)	
LumCal/BeamCal	tbd		tbd	
Total			~60G	

of bytes for address: 4 bytes, time: 2 bytes, ADC: 2 bytes *: tracker assumes nearest neighbor logic, adds 2x8 bytes

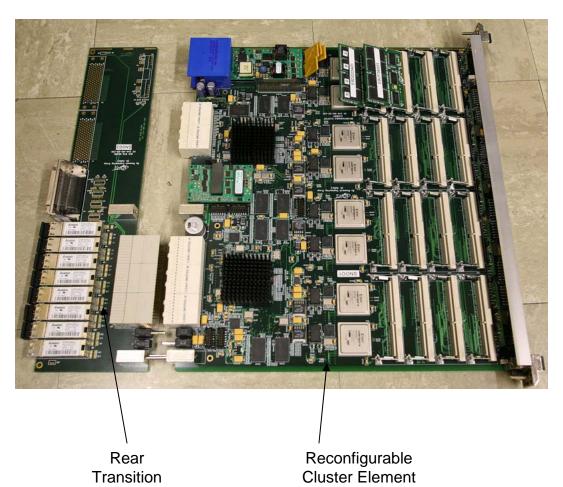
* Nominal ~60 Gbits/s data rate (750 Mbyte/s)

- Need to provide margin, e.g. factor of 4

DAQ Sub-System

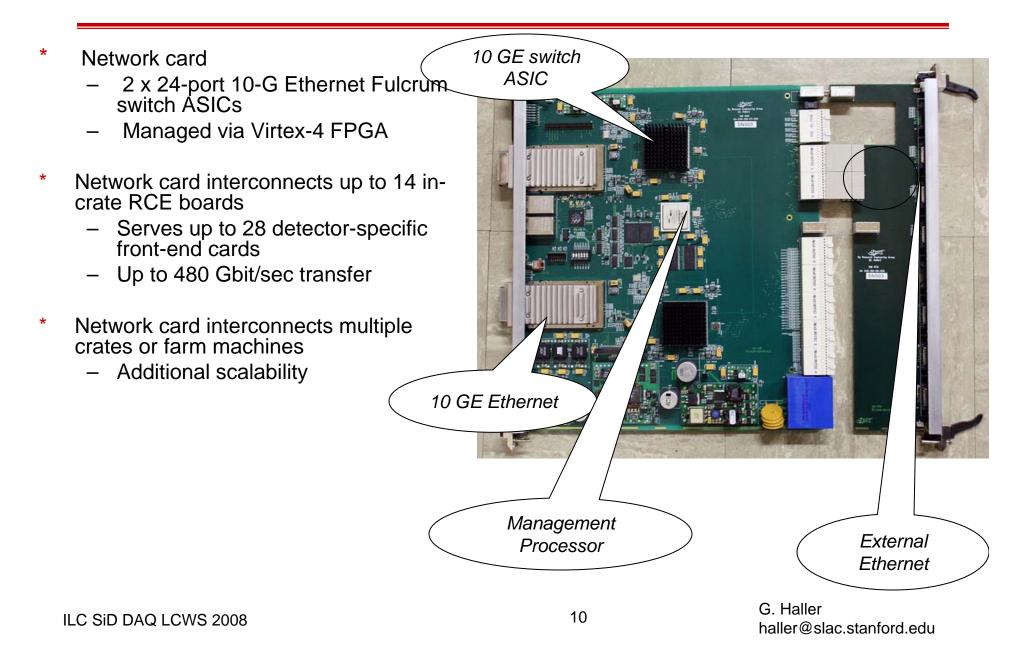
- * Based on ATCA (Advanced Telecommunications Computing Architecture)
 - Next generation of "carrier grade" communication equipment
 - Driven by telecom industry
 - Incorporates latest trends in high speed interconnect, next generation processors and improved Reliability, Availability, and Serviceability (RAS)
 - Essentially instead of parallel bus backplanes, uses high-speed serial communication and advanced switch technology within and between modules, plus redundant power, etc

ATCA Crate



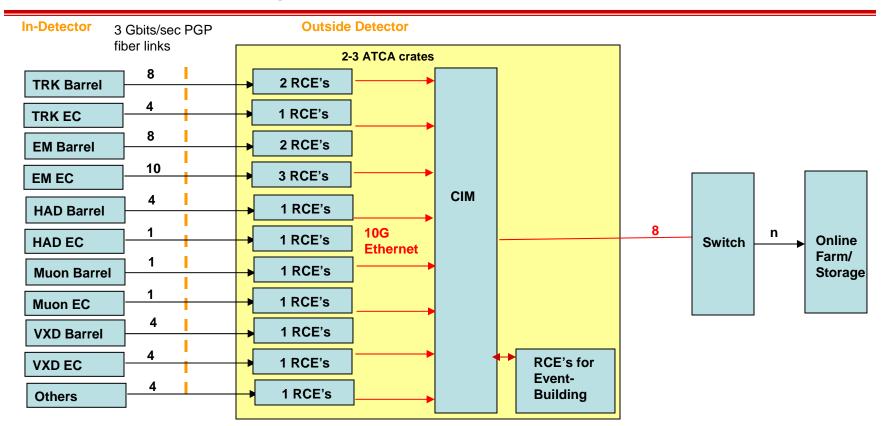
- * ATCA used for e.g. SLAC LUSI (LCLS Ultra-fast Science Instruments) detector readout for Linac Coherent Light Source hard X-ray laser project, also for LSST, Peta-Cache
 - Based on 10-Gigabit Ethernet backplane serial communication fabric
- * Performance issues with off-shelf hardware
 - Processing/switching limited by CPU-memory subsystem and not # of MIPS of CPU
 - Scalability
 - Cost
 - Networking architecture
- * 2 SLAC custom boards
 - Reconfigurable Cluster Element (RCE) Module
 - Interface to detector
 - Up to 8 x 2.5 Gbit/sec links to detector modules
 - Cluster Interconnect Module (CIM)
 - Managed 24-port 10-G Ethernet switching
- * One ATCA crate can hold up to 14 RCE's & 2 CIM's
 - Essentially 480 Gbit/sec switch capacity
 - SiD needs only ~ 320 Gbit/sec including factor of 4 margin
 - Plus would use more than one crate (partitioning)

- Reconfigurable Cluster Element module with 2 each of following
 - Virtex-4 FPGA
 - 2 PowerPC processors IP cores
 - 512 Mbyte low-latency RLDRAM
 - 8 Gbytes/sec cpu-data memory interface
 - 10-G Ethernet event data interface
 - 1-G Ethernet control interface
 - RTEMS operating system —
 - up to 512 Gbyte of FLASH memory
 - 1 TByte/board


Module

G. Haller haller@slac.stanford.edu

Module

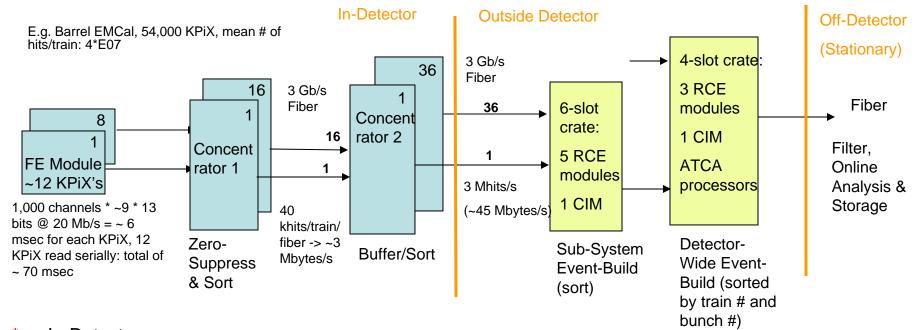

SLAC PPA Cluster Interconnect board

Possible DAQ Architecture, Minimum Number of Reconfigurable Cluster Elements

- * Shows minimum number of RCE's from bandwidth inputs, actual number will be higher reflecting number of Concentrator 2 boards in detector
- * Could be more 3-G links depending what partitioning is best for on-detector electronics
- * Just need to add more RCE's or even a few more ATCA crates
- * 1 ATCA crate can connect to up to 14 x 8 Input fibers
- * Bandwidth no issue (each ATCA crate can output data to online farm at > 80 Gbit/s)
- * No need for data reduction in SiD DAQ, can transfer all data to online processing farm blades

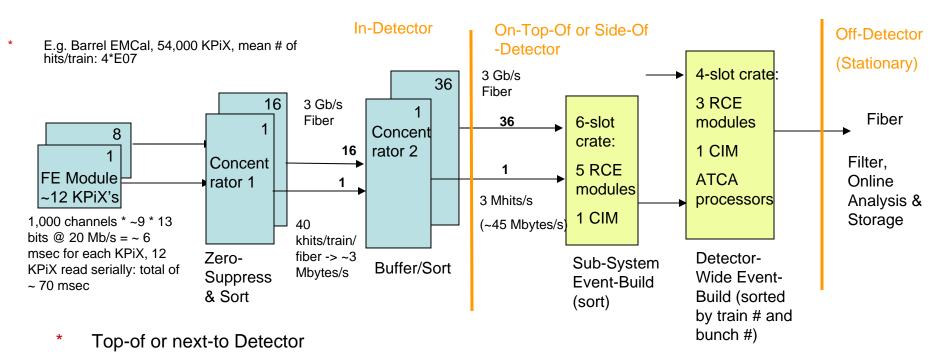
ILC SID DAQ LCWS 2008

G. Haller haller@slac.stanford.edu


Partitioning

- * Although 2 or 3 ATCA crates could handle all the SiD detector data
 - could use one crate for each sub-system for partitioning
 - 2 to 14 slot crates available
 - E.g. one 2-slot crate for each sub-system
 - Total of 1 rack for complete DAQ

EM Barrel Example



- * In-Detector
 - KPIX ASIC as front-end (1,024 channels, serial datain/clock/dataout LVDS interface)
 - Concentrator 1 (FPGA based): zero-suppress. Sort total 740 hits/train/Kpix -> 2.8 Mbytes/s for 96 KPIX's (720 hits/train/KPIX * 5 trains/s * 96 KPIX * 8 bytes)
 - Concentrator 2 (FPGA based): Sort total of ~45 Mbytes/s
 - Total out of detector: 1.6 Gbytes/sec

EM Barrel Example

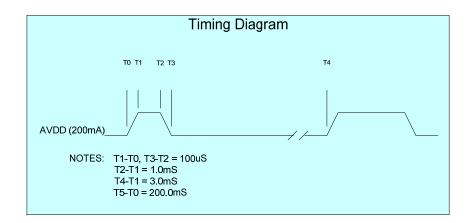
- Readout to outside-Detector crates via 3 Gbit/s fibers
 - Single 6-slot crate to receive 36 fibers: 5 RCE modules + 1 Cluster Interconnect Module (CIM)
- Total out of EM Barrel partition: 1.6 Gbytes/s
 - Available bandwidth: > 80 Gbit/s (and is scalable)
- Sorting, data reduction
- * Can be switched into ATCA processors for data-filtering/reduction or online farm
 - A few 10-G Ethernet fibers off detector

ILC SID DAQ LCWS 2008

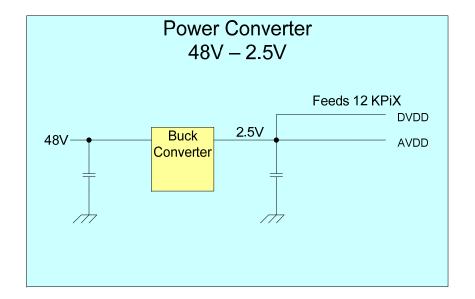
G. Haller haller@slac.stanford.edu

Concentrator-1

Power Conversion Power **Control & Timing** Signals 8 x 12-KPiX To/from Zero-Suppress & Sort, FE Modules Fiber Bufferina Conversion Concentrator 2 3 Gbit/sec full-(tbd) **FPGA** duplex fiber 1.000 channels * ~9 * 13 bits @ 20 Mb/s = ~ 6 msec for each KPiX. 12 **Concentrator 1** Memory KPiX read serially: total of ~ 70 msec


- * Electrical interface to KPIX (or other front-end electronics)
- * Buffer, Sort, Zero-Suppress (if needed) function
- * Fiber connection to DAQ, standard SiD protocol
- * Input Data Rate: 8 x 20 Mbit/sec
- * Buffer Memory
 - 16 bytes from each KPiX channel (time/amplitude for up to 4 samples/channels)
 - Before suppression: 96 KPiX x 1,000 channels x 16 bytes x 4 samples: 6 Mbytes/train
 - After zero-suppression: < 800 hits/train/KPiX => 384 khits/sec x 8 bytes (ID/amplitude/time)
 - => 2.8 Mbytes/s
- * Output Data Rate
 - Unsuppressed: 30 Mbyte/sec or 2.4 Gbit/sec
 - Suppressed: 22 Mbit/s
 - Run standard 3 Gbit/sec link, no issue even without suppression
- * IO to concentrator 2
 - Full-duplex fiber
 - Control/monitoring/event data on same link
 - Concentrator 2 board similar (not shown)

ILC SiD DAQ LCWS 2008


- * Timing
 - Period = 200mS
 - AVDD is pulsed internal to KPiX for 1.0mS
 - DVDD = DC
- * AVDD per KPiX
 - 200mA peak
 - 10 mW average
- * DVDD
 - 2mA average
 - 10mW average

Power Converter Block Diagram (located on concentrator 1 board)

- * Example:
 - Distribute 48V via concentrator 2 boards to concentrator 1 boards
- * On concentrator 1 board:
 - Input Power
 - 48 Volts
 - Output Power
 - 2.5 Volts @ 2.5Amps peak
 - 240mW average
 - High frequency buck
 - > 1.0MHz switching
 - 1.0uH- 10uH air core inductor
 - AVDD droop < 100mV
 - 48 volt droop < 5 volts
 - Efficiency > 70%
 - Can run higher input V (e.g. 400V) if needed

- * Power for 96 KPiX is about 2 watts. At 70% efficiency the input power is 1.3*2=2.6 watts input.
- * The capacitance on the input of the converters should smooth charging period over the 200mS.
- * Set the input capacitor for a 5 volt drop during AVDD peak power. Letting the voltage to drop would minimize the capacitor size.
- * The average current is to one concentrator 1 board is 2.6 watts/48 volts = 0.055 amps.
- * Concentrator 2 boards could distribute power to concentrator 1 boards
 - 16 Concentrator 1 board for each concentrator 2 boards
 - 0.88A to each concentrator 2 board
- * Wire resistance and power in cable for 20 meters (10m distance, x 2 for return)
 - AWG Ohms/20 meters voltage drop power loss in wire
 - 26 2.66 2.34 2W
 - 22 1.06 0.88 0.77W
- * Total of 36 cables into detector (for 36 concentrator-2 boards)
 - Total power in all 36 cables: ~30W with 22-AWG (less if larger or parallel wires)
 - Total power from supply: ~ 1.5kW (or about 30A at ~50V) (plus concentrator 1 and 2 power)
 - Plus add concentrator 1 and 2 power (~700W for EMCAL)
- * Another option: Serial Power

* As an example, table below assumes KPIX-based front-end for most sub-systems

Sub-System	# of sensors	#of pixels/se nsor	# of KPiX (or equivalent)	Power for front-end (70% eff)
TrackerBarrel	5,788	1,800	10,000	250W
Tracker Endcap	2,556	1,800	2 * 3,500	200W
EM Barrel	91,270	1,024	54,000	1500W
EM Endcap	23,110	1,024	2 * 18,000	520W
HAD Barrel	2,800	10,000	27,000	800W
HAD Endcap	500	10,000	2 * 10,000	500W
Muon Barrel	2,300	100	5,000 (64-CH KPiX)	100W
Muon Endcap	2,800	100	2 * 1,600	100W
Vertex			tbd	tbd
LumCal			tbd	tbd
BeamCal			tbd	tbd

- * Add power for concentrator 1 and 2 boards (EMCAL is highest, ~700W)
 - Concentrator board mainly contains FPGA for sorting

Summary

- * DAQ system for ILC SiD consists of
 - 1,024-channel KPIX front-end ASIC's for several sub-systems plus other ASIC's for e.g. Vertex
 - Concentrator 1 and 2 boards
 - ATCA modules
- * Event data rate for SiD can be handled by current technology, e.g. ATCA system being built for LCLS
 - SiD data rate dominated by noise & background hits
 - Can use standard ATCA crate technology with e.g. existing SLAC custom cluster elements and switch/network modules
- * No filtering required in DAQ. Could move event data to online farm/off-line for further filtering/analysis
 - Still: investigate filtering in ATCA processors
- * Power distribution at higher (48V to 400V) voltages to reduce wiring volume