WORKING GROUP SUMMARY LOOPVEREIN, TOP AND QCD

THOMAS BECHER, FERMILAB

LCWS08, UIC, Nov. 15-20, 2008

WORKING GROUP SUMMARY LOOPVEREIN, TOP AND QCD

THOMAS BECHER, FERMILAB

loose association of physicists interested in precision calculations

LCWS08, UIC, Nov. 15-20, 2008

some of the physics which is particularly challenging

GROUP SUMMARY WORKING

LOOPVEREIN, TOP AND QCD

THOMAS BECHER, FERMILAB

loose association of physicists interested in precision calculations

LCWS08, UIC, Nov. 15-20, 2008

PREDICTIONS FOR THE ILC

- Precise predictions are crucial for the physics program at the ILC.
 - QCD effects present the main challenge:
 - rich phenomenology, produces backgrounds to many new physics signals,
 - large coupling constant, leading order perturbation theory is often not sufficient,
 - need to control non-perturbative effects (hadronisation, ...).
 - ILC: higher energy and luminosity → higher precision and higher multiplicity final states.

CHALLENGES

- Many loops
 - NNLO corrections to Bhabha scattering
 - NNLO corrections to $e^+e^- \rightarrow 3$ jets
- Many legs
 - Unitarity methods, recursion relations
- Many scales
 - Effective theory calculations and resummation
- More realism
 - Detailed simulations and exp. studies

17 talks in our WG

from Dirk Seidel's talk

MANY LOOPS

BHABHA SCATTERING @NNLO

[A. Ferroglia]

Bhabha scattering is used for the luminosity measurement at lepton colliders

$$\mathcal{L} = \frac{\frac{dN}{dtd\Omega}|_{ ext{measured}}}{\frac{d\sigma}{d\Omega}|_{ ext{theory}}}$$
 — precise prediction crucial

- After a large effort by many people, we now have all relevant 2-loop QED corrections, including
 - heavy flavor corrections
 - hadronic corrections
- Corrections still need to be implemented into MC event generator.

$\sigma(e^+e^- \to t\bar{t})$ near threshold

[D. Seidel]

- NNNLO nearly complete. Needed for <3% accuracy on cross section. $\delta m_t < 100 {\rm MeV}$
 - hard matching calculation incomplete, ongoing work.
- Part of the $\mathcal{O}(\alpha\alpha_s)$ corrections were calculated and found to be very small ~ 0.1%. Presumably, the entire correction is negligible. Kiyo, Seidel and Steinhauser '08

W+W-NEAR THRESHOLD

- Precision determination of mw. 6 MeV accuracy?
- NLO corrections where the W width is consistently included by two groups:
 - using complex mass scheme Denner et al. '05
 - exclusive: arbitrary cuts
 - using EFT for unstable particles Beneke at al.'07
 - works only in the threshold region but can include dominant NNLO effects.

$e^+e^- \rightarrow 3$ JETS @ NNLO

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich '07 Weinzierl '08 [Gionata Luisoni]

- Implemented in fixed order event generator. Can be used for NNLO evaluation of event shapes.
- Used to determine α_s from LEP data:

$$\alpha_s(M_{\rm Z}^2) = 0.1240 \pm 0.0008 \, ({\rm stat}) \pm 0.0010 \, ({\rm exp}) \pm 0.0011 \, ({\rm had}) \pm 0.0029 \, ({\rm theo})$$

- Even at NNLO perturbative uncertainty dominates.
 - Resum logarithmically enhanced contributions.

$e^+e^- \rightarrow 3$ JETS @ NNLO

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich '07 Weinzierl '08

$$\alpha_s(M_{\rm Z}^2) = 0.1240 \pm 0.0008 \, ({\rm stat}) \pm 0.0010 \, ({\rm exp}) \pm 0.0011 \, ({\rm had}) \pm 0.0029 \, ({\rm theo})$$

- Even at NNLO perturbative uncertainty dominates.
 - Resum logarithmically enhanced contributions.

MANY LEGS

MANY LEGS

- As the number of external legs grows, the standard Feynman diagram approach to perturbative calculations becomes impractical:
 - 1. Number of diagrams grows factorially with the number of external legs.
 - 2. Passarino-Veltman reduction to scalar integrals produces large number of terms and is numerically unstable when external momenta are linearly dependent.
- Solution to 1.) at tree level: Berends-Giele '88 recursion relations
 - Polynomial-complexity algorithm for calculating high-multiplicity tree-level amplitudes in QCD.

MANY LEGS @ NLO

- A pressing problem in pQCD are NLO calculations of processes with many legs
 - □ pp \rightarrow ≥ 3 jets, $e^+e^- \rightarrow$ ≥ 4 jets
 - pp \rightarrow (W, Z) + \geq 2 jets, pp \rightarrow (W W, W Z, WW) + \geq 2 jets, ...
- Most of this work is done in preparation of the LHC, but the same methods will be used to calculate ILC processes.
- Talks on
 - $pp \rightarrow t\bar{t}Z$ T. McElmurry
 - Tensor reduction of pentagon and hexagon int's Th. Diakonidis

RECYCLING OF TREES

- Lots of recent work and many interesting new ideas over the last few years, e.g.
 - New tree-level recursion relations: based on MHV amplitudes Cachazo, Svrcek and Witten, between on-shell amplitudes Britto, Cachazo, Feng and Witten.
 - implemented in new matched MC code [M. Peskin]
 - Generalized unitarity. Bern et al., Britto, Cachazo and Feng. Simple numerical implementation: Ossola, Padadapoulos and Pittau.
 - Recycles trees into loops!

YES, WE CAN: 20 GLUON ONE LOOP AMPLITUDES

[J. Winter]

- Code for the purely gluonic case has been written and validated.

 Uses Berends-Giele recursion for tree amplitudes. Giele and Zanderighi arXiv:0805.2152
 - High precision, polynomial computing time!
- New, independent C++ implementation by J. Winter

OUTLOOK

- Virtual corrections for $pp \rightarrow W$, Z + 3 jets based on unitarity and recursion relations are now available
 - Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosover, Maitre arXiv: 0808.0941
 - Ellis, Giele, Kunszt, Melnikov and Zanderighi arXiv:0810.2762
- Next steps: add real emission. Phase-space integration.
- Future: implement results into MC generator

MANY SCALES

EFFECTIVE FIELD THEORY

- Fixed order calculations become unreliable in situations where several disparate scales are relevant. Higher order corrections enhanced by large logarithms of scale ratios.
- Effective field theories can be used to simplify such problems, and to resum the enhanced higher-order corrections.
- Many examples
 - Top production near threshold: NRQCD
 - WW production near threshold: unstable particle EFT
 - Production of energetic jets with small invariant masses: Soft-Collinear Effective Theory

RESUMMATION FOR THRUST [TB]

$$T = \max_{\mathbf{n}} \frac{\sum_{i} |\mathbf{p}_{i} \cdot \mathbf{n}|}{\sum_{i} |\mathbf{p}_{i}|} \qquad 1 - T \approx \frac{M_{1}^{2} + M_{2}^{2}}{Q^{2}}$$

- Prediction for event-shape variables dominated by perturbative uncertainty even at NNLO Gehrmann et al. '07.
 - Traditional methods allowed resummation to NLL Catani et al. '93 but not beyond.
- Using RG evolution in SCET we were able to derive NNNLL resummed distribution matched to NNLO TB and Schwartz, JHEP 0807:034, 2008. Fit to LEP data gives

$$\alpha_s(m_Z) = 0.1172 \pm 0.0010(\text{stat}) \pm 0.0008(\text{sys}) \pm 0.0012(\text{had}) \pm 0.0012(\text{pert})$$

= 0.1172 ± 0.0022 .

most precise α_s at high energy. theory unc. no longer dominant

TOP MASS FROM JET SHAPES [S. Mantry]

- Consider energetic top jets: $Q^2 \gg M_{\rm jet}^2 \approx m_t^2 \gg m_t \Gamma_t$
- Factorization theorem based on sequence of effective theories QCD → SCET → HQET
 - resum log's using RG evolution
- Measurement of the jet-mass distribution gives precise top mass determination with controlled systematics.

MORE REALISM

SIMULATION

- Important to confront these theoretical calculations with experimental reality.
- Example: effects of beamspread, beamstrahlung and ISR on $t\bar{t}$ cross section near threshold [Boogert & Gournaris]

TOP PRODUCTION

- Several talks on MC simulation of top production
 - One-loop matched shower for production and decay of top quarks [S. Latunde-Dada]
 - \bullet $t\bar{t}$ analysis at SiD [E. Devetak]
 - Simulation study of top-antitop event reconstruction [K. Ikematsu]
- and on various aspects top physics
 - theory review [Z. Sullivan]
 - new physics studies with top [M. Vos]
 - at the Tevatron [C. Gerber]

THANK YOU!