Study of Solid State Photon Detectors Read Out of Scintillator Tiles

A. Calcaterra, <u>R. de Sangro</u>, G. Finocchiaro, P. Patteri, M. Piccolo INFN - Laboratori Nazionali di Frascati

> E. Kuznetsova Università di Roma "Sapienza"

Outline

- Scope of the Work
- Test Beam Set Up
- Calibrations
 - Calorimeter (# of MIPS in detector)
 - External Tracker (Resolution and Residuals)
 - Temperature Monitoring
 - PD Gain Measurement
- Preliminary Results on
 - Charge vs V_{bias}
 - Light Collection
 - Amplitude X,Y Scans
 - Efficiency Measurement
 - X,Y Radiographies
 - Cosmic Ray Test Stand Results
 - Timing Resolution
- Summary

Scope of Study

- Present LC hadron calorimeter prototype (CALICE) uses WLS fibers and MEPhI SiPM. Since its design and construction:
 - Newer solid state PD have been made available from several producers: Hamamatsu, SensL, IRST
 - New devices are more sensitive to blue light
 - avoid WLS fiber
- Test other possible combination of scintillator material, thickness, geometry with different kind of PD for calorimetry applications
- Study other SiPM/MPPC characteristics such as excellent time resolution and noise rate, important also for other kinds of applications, i.e. medical devices etc.

10 Configurations all 3x3 cm² Tiles

- ⁵ mm $\begin{bmatrix} Ch.1 BC400 5mm, Hamamatsu 400 pixel (50x50 <math>\mu m^2) \\ Ch.2 BC400 5mm, Hamamatsu 1600 pixel (25x25 <math>\mu m^2) \end{bmatrix}$

 - Ch.3 Vladimir (Russia) Scintillator 5mm, Hamamatsu 400 pixel
- ² mm Ch.4 EJ212(~BC400) 2mm, Hamamatsu 400 pixel Ch.5 EJ212(~BC400) 2mm, Hamamatsu 1600 pixel
 - Ch.6 BC400 5mm, Ham 3x3mm² 3600 pixel (50x50 µm²)
 - Ch.7 CALICE Vladimir tile w/Kuraray Y11 1mm fiber, MEPhI/ Pulsar SiPM 1156 pixel ($20x20 \mu m^2 - 1mm^2$) *
 - Ch.8 BC400 5mm, IRST 625 pixels (40x40 μ m²)
 - Ch.9 BC400 5mm, SensL SPMScint1000X04, 1000 pixel
 - Ch.10 EJ212(~BC400) 2mm, SensL as above, 1000 pixel

PD-Scintillator Coupling

• Side Centre

 Attached to the centre of one side of the tile using optical glue

Config 6

Face Centre

3x3 mm² Hamamatsu MPPC attached to the centre of the tile <u>face</u> with optical glue

CALICE

Green WLS fiber, 100 μm of air between the fiber and the SiPM

"Standard" configuration but the IRST SiPM is fitted in a protective case with a transparent window glued to the tile (IRST SiPM does not have a protective coating on its face)

Nov 23, 2008

Preamp-Tile Assembly

- INFN-Pisa design based on the GALI-5 chip
- Gain ≈10 Mention Board Control Con
 - A custom NIM module distributes (via a flat cable) both V_{bias} to the PM and the low voltage supply (8V) to the preamp

10-Channel Test Box

BTF Set Up

The BTF can deliver up to 50Hz of ≈1ns pulses of a tunable number (from 1 to 10⁴) of e[±] with energy up to 500 MeV

Typical beam size few mm² (tunable)

Temperature Monitor

External Tracker

Calorimeter Selection of # MIPs

PD Response: ADC counts

PD Response: Gain vs Bias

PD Response: # of Pixel

Nov 23, 2008

PD Response vs # of MIPs

Charge collected as a function of the number of MIPs impinging on the scintillator tile

NOTE:

This data is from an older test beam

The BTF allows to have many more MIPS/event

-

Can measure dynamic range of the various configurations

Ham MPPC 1600 pixels

PD Response: CR Data

Temperature Dependence

Variation with T of the average collected charge per MIP (CR data) for different PMs

Efficiency Tile Profile X

Cut at 2 pixels

Efficiency Tile Profile Y

Cut at 2 pixels

Nov 23, 2008

R. de Sangro - LCWS 2008

PD Response to 1 MIP - X

Cut at 2 pixels

PD Response to 1 MIP - Y

Cut at 2 pixels

PD Response to 1 MIP – Side Centre

tracks 9 X (cm) Cut at 2 pixels 8.5 PD œ scan 22 > 6.5 **ySiPM3** X scan pSiPM3 xSiPM3 Y (cm) Amplitude (Pixels) 05 57 -35 8.5 -30 25 7.5 15 20 15 10 6.5 10 5.5 0^L_4 5 5.5 6 6.5 7.5 X (cm) 4 4.5 7 7.5 4.5 5 5.5 6 6.5 7 X (cm)

Tile edges excluded

PD Response to 1 MIP – Face Centre

Cut at 2 pixels

Tile edges excluded

PD Response to 1 MIP – CALICE

Cut at 2 pixels

Tile edges excluded

Efficiency vs Threshold – 1 MIP

Cosmic Ray Data

Coming Soon

- Systematic comparison of different configurations
 - Different Silicon Photomultipliers
 - Different Tile Thickness/Material
 - Fiber vs No-Fiber
 - Measure Response vs # on MIPS (Dynamic Range)
- More results on timing performances

Summary and Outlook

- We have set up a test stand for systematic studies of solid state photon detectors applications to HEP
- We have shown preliminary results from a test beam comparing different tile/PD configurations
- We have a program to continue and improve these measurements with more statistics