

Ties Behnke², Ralf Diener¹, Lea Hallermann¹, Matthias Enno Janssen², Nils Kanning⁵ Alexander Kaukher⁴, Krzysztof Komar², Diana Linzmaier³, Peter Schade², Oliver Schäfer⁴

DESY

1: University of Hamburg — 2: DESY Hamburg — 3: University of Halle 4: University of Rostock — 5: University of Göttingen

First Results from New High Magnetic Field Measurements with the MediTPC Prototype

Overview:

- Introduction
- Electron Attachment
- Resolution Studies
- Outlook

MeditTPC Protoype

ilc

MediTPC Results

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

• Length: 800mm (sensitive ~660mm), Diameter: 27 cm

Read out with ALEPH electronics

Triple GEM amplification setup:

Transfer fields: 1500 V/cm

Induction field: 3000 V/cm

 320 - 330 V per GEM (depending on magnetic field)

• All measurements presented here taken with P5 gas (Ar:CH₄/95:5)

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Komag Magnet Test Stand

- Magnetic field up to 5.25 T (deviation < 7%)
- Data Samples taken up to 4T

IIL

Side view

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- á) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Readout Pad Planes

Pitch 2.2x6.2 mm² in use: 6x22 pads (= 198 Channels) 3-5 dead channels

116

Pitch 1.27x7.0 mm² in use: 12(11)x48 pads (= 576 Channels) 3-5 dead channels

Both sizes available with non-staggered and staggered pad layout

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Measurements Runs

 Amplification settings optimized to minimize charge signals in overflow while maximizing amplification

116

- Noise level of about:
 - <6/256 ADC counts for large pads</p>
 - <8/256 ADC counts for small pads</p>

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Data Reconstruction

- Data reconstructed with MultiFit software (for compatibility with old results):
 - 3 step process:
 HitFinding → TrackFitting
 - Two implemented track fit methods:
 - Chi Squared Fit with the option to use external diffusion and defocussing information for Pad Response Function (PRF) correction of hit positions

IIL

- Global Fit with likelihood function with the option to use external diffusion and defocussing information for stabilizing fit by calculating charge cloud width instead of fitting this parameter
- Resolution Calculation with Geometric Mean Method:
 Two residuals calculated for track fit including the point and for track fit without the point Resolution σ calculated from geometric mean of the width of both residual distributions:

$$\sigma = \sqrt{\sigma_{incl.} \cdot \sigma_{excl.}}$$

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- Conclusion and Outlook

Electron Attachment due to Oxygen Contamination

- Drifting electrons can attach to oxygen impurities in the gas and hence the signal will be weaker (→ loss of primary statistics)
- Number of free electrons: N(t) = exp(-At)
- Measured mean hit charge (MPV of Landau distributions) at various drift lengths and for several oxygen concentrations

 Influence of oxygen only visible at rather high concentrations of a few hundred ppm,

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- a) D-11
- b) B=3T c) B=4T
- 4) Conclusion and Outlook

Electron Attachment due to Oxygen Contamination

Number of free electrons: N(t) = exp(-At)

with attachment rate $A = P(M) \times P(O_2) \times C_{O_2,M}$

Calculated attachment coefficient from measured attachment rate:

Oxygen content [ppmV]	Attachment Coefficient [µs ⁻¹ bar ⁻²]	
3	0	
1250	8.56 ± 1.92	
2400	8.66 ± 1.08	
2900	10.31 ± 0.90	
3700	11.64 ± 0.68	

Results comparable to literature:
 (Ar:CH₄/90:10)
 M. Huk et al.,
 "Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures",
 Nucl. Nstr. Meth., A267, 1988

[i-butane]	E/P [V/cm bar]	υ [cm/ μs]	$A \\ [\mu s^{-1}]$	$C_{O_2,M}$ $[\mu s^{-1}$ $bar^{-2}]$
0	100	5.36	0.048 ± 0.003	15.1 ± 1.5
	138	5.45	0.034 ± 0.003	10.5 ± 1.4
	163	5.32	0.029 ± 0.003	9.2 ± 1.4
	200	5.07	0.024 ± 0.003	7.4 ± 1.3
	250	4.70	0.019 + 0.003	5.9 + 1.1

IIL

- 1. Introduction a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Electron Attachment due to Oxygen Contamination

116

- Comparison with Garfield/Magboltz simulation shows a huge deviation (factor of 100)
- Reason still unknown, but other publications show also deviations (but smaller) of measurement results and simulation

First Resolution Results with Smaller Pads

ile

MediTPC Results

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Ralf Diener, Hamburg University

First Resolution Results with Smaller Pads

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

First Resolution Results with Smaller Pads

IIL

First Resolution Results with Smaller Pads

ile

MediTPC Results

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- á) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

First Resolution Results with Smaller Pads

First Resolution Results with Smaller Pads

ile

MediTPC Results

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Angle Cut at $|\phi|$ <1.0° instead of $|\phi|$ < 0.1rad (5.73°)

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Conclusion and Outlook

- Electron attachment due to oxygen contamination has been measured and visible effects occur only at contaminations well above the usual amount (up to a few 10 ppm_v)
- Understand the reason for the discrepancy in measured and simulated attachment rates
- Small pad size is essential to reach resolution goal at 4T
- Resolution goal of less than 100µm over whole drift length of final TPC is in reach (it has been reached for the 660mm length of the prototype)
- Finish the measurements with the small pads
- Get a better understanding of the measured data and optimize reconstruction (especially regarding angle effects)
- Reconstruct data with MarlinTPC and compare results

 → testing, improvement and further development of MarlinTPC
- Examine the possibilities to limit drift length dependent diffusion (gas mixture, field settings)

Appendix:

First Resolution Results: Extrapolation to 2m Drift

IIL

MediTPC Results

- 1. Introduction
- a) MediTPC
- b) Test Magnet
- c) Pad Planes
- d) Measurement
- e) Reconstruction
- 2. Attachment
- a) Rate
- b) Coefficient
- c) Simulation
- 3) Resolution
- a) B=1T
- b) B=3T
- c) B=4T
- 4) Conclusion and Outlook

Angle Cut at $|\phi| < 1.0^{\circ}$ and $|\phi| < 0.1$ rad (5.73°)