GEM Studies for LCTPC

Lea Hallermann

DESY Hamburg University of Hamburg

Linear Collider Workshop 19th November 2008

LCWS 2008

GEM Studies for LCTPC

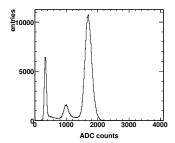
Lea Hallermann

1/14

content

- comparative GEM studies
 - test chamber and GEM types
 - gain measurements
 - energy resolution
- 2 development of GEM support structure
 - profile measurement
 - structure evolution
 - ceramics grid
 - proof of principle
- 3 summary and outlook

test chamber



diameter: 21 cm height: 19 cm drift distance: 2 cm source on top of cathode

test chamber and GEM types

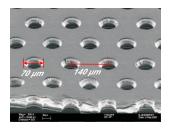
gain measurements

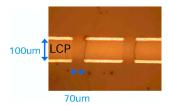
energy resolution

Iron 55 source pedestal, escape and photo peak (5.9 keV)

corrected photo peak position and preamp calibration \Rightarrow gain determination

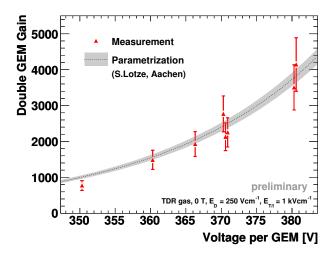
test chamber and GEM types gain measurements energy resolution

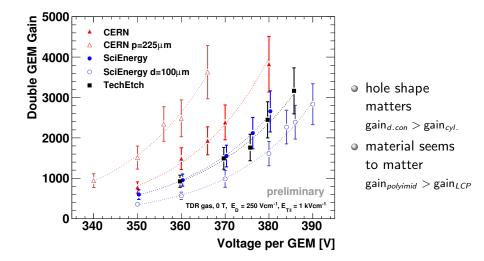

measurement conditions


- o double GEM setup
- voltage divider
- o drift distance 2 cm
- drift field 250 V/cm
- transfer field 1000 V/cm
- induction field 1000 V/cm
- TDR gas (93 % Argon, 5 % CH₄, 2 % CO₂)
- unsegmented anode
- transimpedance preamplifier
- no magnetic field

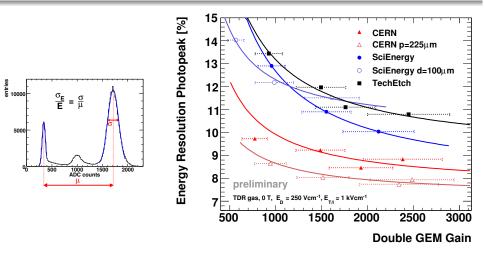
test chamber and GEM types gain measurements energy resolution

tested GEM types


manufacturer	substrate	thickness	pitch	etching	hole shape
CERN GDD group	Polyimid	50 μm	140 µm	chemical	double conical
CERN GDD group	Polyimid	50 µm	225 µm	chemical	double conical
TechEtch, USA	$Kapton^{\mathbb{R}}$	50 μm	140 µm	chemical	double conical
SciEnergy, Japan	LCP	50 µm	140 μm	Laser/plasma	cylindrical
SciEnergy, Japan	LCP	100 μm	140 μm	Laser/plasma	cylindrical


test chamber and GEM types gain measurements energy resolution

gain parametrization describes data


test chamber and GEM types gain measurements energy resolution

gain comparison for different GEM types

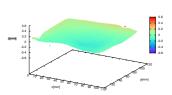
test chamber and GEM types gain measurements energy resolution

energy resolution

reason for differences under study with simulation

LCWS 2008

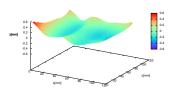
GEM Studies for LCTPC Lea


Lea Hallermann

8/14

profile measurement

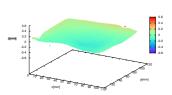
structure evolution ceramics grid proof of principle


profile measurement of framed GEMs

gem pitch ceramic

CERN GEM with GRP frame

- measured with laser device
- deviations less than 1 mm
- impact on gain: 380 μm cause variations up to ±6 %

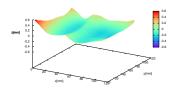

gem_jap_g%

SciEnergy GEM with GRP frame

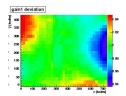
profile measurement

structure evolution ceramics grid proof of principle

profile measurement of framed GEMs



gem pitch ceramic

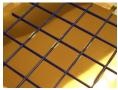

CERN GEM with GRP frame

- measured with laser device
- deviations less than 1 mm
- impact on gain: 380 μm cause variations up to ±6 %

SciEnergy GEM with GRP frame

LCWS 2008

Lea Hallermann


profile measurement structure evolution ceramics grid proof of principle

support structure development

- $\,\bullet\,$ TPC prototypes use mainly framed 10 $\times\,10\,\text{cm}^2$ GEMs
- towards ILD larger coverage is needed
- new support structure requires
 - small dead regions
 - mechanical stability and flatness
 - least possible radiation length
- first tests with nylon thread and rapid prototyping grids

nylon thread

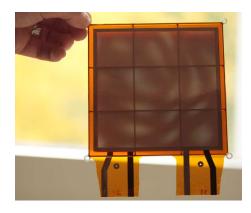
ABS polymers

polyamid (PA 12)

GEM Studies for LCTPC Le

Lea Hallermann

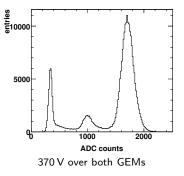
profile measurement structure evolution ceramics grid proof of principle


ceramics seem to work best

- Aluminum Oxide Al₂O₃
- radiation length $X_0 = 7.1 \text{ cm}$ (GRP $X_0 = 13.3 \text{ cm}$)
- harder
- higher contour accuracy
- minimum width: 1 mm
- thickness: 1 mm, height: 2 mm

profile measurement structure evolution ceramics grid proof of principle

grid GEM



- standard CERN GEMs glued to both sides of grid
- glue only on outer bars
- dispensing robot used
- procedure worked well

profile measurement structure evolution ceramics grid proof of principle

proof of principle

- voltage test for electrical stability in air
 - GEMs withstand > 600 V
 - same values as before gluing
- grid used in test TPC
 - first iron spectra measured
 - detailed studies will follow

summary and outlook

summary

- CERN GEMs show best performance
 - gain
 - energy resolution
 - flatness and handling
- ceramic grid very promising

outlook

- Polish GEM ordered for testing
- repeat comparative measurements with P5 gas
- study of profile impact in simulation and experiment
- spatial resolved measurement of grid GEM in Medi TPC
- development of Large Prototype module with grid GEM

LCWS 2008