Background studies for the VTX geometry optimisation

Paweł Łużniak (Łódź University) lupawel@mail.desy.de

LCWS08, Chicago

Outline of the analysis

• Consider different VXD geometries

vary inner radius, thickness and resolution

- Include beam induced background and physics backgrounds
- Study flavour tagging performance
- Simulate Higgs boson BRs measurement at ILC

based on fast simulation tools

PhD thesis prepared at the Łódź University

Vertex Detector layout

Layer	Radius	No. of ladders	Ladder width
1	8 - 18 mm	8	19 mm
2	26 mm	11	22 mm
3	37 mm	16	22 mm
4	48 mm	20	22 mm
5	60 mm	25	22 mm

B = 4T

Thickness $0.05 - 0.3\% X_0$ Spatial resolution $2 - 8\mu m$

Jet flavour tagging in presence of e^+e^- background

- e⁺e⁻ pairs from beamstrahlung (background) simulated using Guinea-Pig for nominal accelerator parameters @ 500 GeV.
- 14 mrad crossing angle.
- ILC detector simulation:
 - All charged particles tracked through Vertex Detector (VTX), accounting for multiple scattering and energy loss (own software tools)
 - Other detector components simulated using SGV 2.30 (fast simulation tool)
- VTX readout: 20 times per bunch train (1 readout cycle = 131 BX)
- Tracks detected in the central tracker refitted with hits from VTX (both physics and background hits) selected with Kalman Filter (own software tools)
- Vertices reconstructed with **ZVTOP**, jet tagging with **NN**

Spatial resolution 4 μ m, radius of the first layer 15 mm.

Spatial resolution 4 μ m, layer thickness 0.1% X_0 . R₁ = 26 mm - only 4 layers.

Layer thickness 0.1% X_0 , radius of the first layer 15 mm.

Same NN tagging algorithm used in all cases!

For spacial resolution $< 4\mu m$ number of reconstructed secondary vertices for u,d,s jets increases:

background: 0 bx

background: 131bx

Background studies for the VTX geometry optimisation

Physics analysis

- Event generator PYTHIA : Signal: $e^+e^- \rightarrow Zh \quad (h \rightarrow c\overline{c}, h \rightarrow b\overline{b})$
 - SM: M_h = 127 GeV - MSSM: M_A = 350 GeV, M_2 = 200 GeV, $A_{\tilde{f}}$ = 2450 GeV, M_h , Γ_h , b. r. from HDECAY M_h = 127 GeV

Background: $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow q\bar{q}, \ e^+e^- \rightarrow ZZ$, other higgs decays

- Centre of mass energy 500 GeV
- Corresponding luminosity 500 fb⁻¹
- e^+e^- background generated with Guinea-Pig
- Vtx. reco. with ZVTOP, jet tagging with NN

- Detector:
 - Simulation à Grande Vitesse 2.30
 - The entire ILC detector as in TESLA TDR
 - Varying VXD parameters (long barrel)

Measurement of the Higgs Boson Branching Ratios

 $H \to b\overline{b}$

 $H \to c \overline{c}$

Layer thickness 0.1% X_0 , radius of the first layer 15 mm.

Measurement of the Higgs Boson Branching Ratios

 $H \to b\overline{b}$

 $H \to c \overline{c}$

Spatial resolution 4 μ m, layer thickness 0.1% X_0 . R₁ = 26 mm - only 4 layers.

- Spatial resolution better than 4 μ m reduces performance of jet flavour tagging due to increased probability of reconstructing fake secondary vertices, especially in presence of e^+e^- background. Retraining of the NN might improve results.
- Reduced layer thickness improves jet flavour tagging performance and reduces impact of e^+e^- background on jet flavour tagging.
- In presence of e^+e^- background radius of the first layer should not be smaller then 12 mm, otherwise jet flavour tagging performance is reduced.