

Conventional Facilities and Siting

Alternate Site and Tunnel Configuration Status Report KEK (1)

Atsushi Enomoto, Shigeki Fukuda, Masami Tanaka

Nov. 2008, Chicago

Aternate Site Study

Applicability of site / tunnel configuration

	Proposed Site ID	Tunnel depth	Tunnel configuration	Access to tunnel(s)	Access to klystron	Site Availability in Japan
1	RDR Americas & European sample site	Deep	Twin	Shaft	Anytime	Not available
2	RDR Asian sample site	Deep	Twin	Sloped tunnel	Anytime	Available
3	Dubna site	Shallow	Twin (shallow beam tunnel, near- surface service tunnel)	Shaft	Anytime	Not available
4	DESY Site	Shallow	Single	Shaft	No	Depend on tunnel depth
5	Americas Alternative (RF	Deep	Single	Shaft	Anytime	Available
	Cluster)					
6	Asian Alternative (DRFS)	Deep	Single	Sloped tunnel	No	Available

Nov. 2008, Chicago

ilc.

Cost(5): Variation (II): Most cost effective method

- Circulator elimination by power feeding to 2 cavities from one klystron. Output power is 732kW.
- Modulated Anode Klystron (MAK) is adopted.
- Anode modulation pulser does not need the high power and cost efficient pulser is manufactured.
- DC Power Supply is common for 26 cavities and voltage drop during the pulse is compensated with appropriate circuits at the level that LLRF can feed back.
 - It is easy to suppress the collector power dissipation without rf in MAK by adjusting the modulated anode voltage.
 - Are Disconnection SWs necessary?

Configuration

Rough Sketch for DRFS

- Single tunnel layout. 5m diameter (like DESY)
- Cryomodule is hanged down from the top of the tunnel.
- RF sources are connected thru circulator, but plan without circulator is possible and discussed.
- In this drawing, a modulator applies the voltage to two RF source. Working space are considered as shown in the drawing.
- Modulators, LLRF units and other electrical devices are installed in the shielding tunnel.
- There is a choice that the DC power supplies or chargers are concentrated for 4 or 8 units or more.
- Layout of using a modulated anode klystron is possible.

Alternative scheme proposed

	BCD	DESY	DUBNA	RF Cluster	DRFS
Schem e		HV Cable	Klystron Gallery WG	RF Station	
Deep/Shalbw					
CivilCost					
Cooling Cost					
Heat source					
Site Dependence			• • • • • • • •	·	
LLRF handling	0	0	0	\triangle	Ø
Vector Sum	26 cav. Vector Sum	26 cav. Vector Sum	26 cav. Vector Sum	780 cav. Vector Sum	1 to 1
Redundancy	0	0	0	\triangle	Ø
Kly Failure Impact	26 Cavity Stop	26 Cavity Stop	26 Cavity Stop Easy Klystron Replace	Easy Klystron Replace	Scattered failure section
0 ther Issues		Long HV Cable		Long Vacuum WG System	Very Sinple Configuration
R&D Cost	0	0	0		0
Test Facility	3 Cryom odule/26 Cavity= 1 RF unit	3 Cryom odule/26 Cavity= 1 RF unit	3 Cryom odule/26 Cavity= 1 RF unit	Difficult to evaluate one minimum unit	Very smallsystem
TotalCost					

.

Summary

- (1) An alternate site/tunnel configuration which has a single tunnel configuration and suitable for the Asian sample site has been studied.
- (2) The basic feature is compact size of RF source units directly attached with a couple of cavities, of which scheme enables lower high voltages, lower powers. This seems a scheme easier to treat (transport, install, ...) and operate (power feed, water-cool, control, ...), then is more reliable and safe in operation.
- (3) Cost impacts will be studied hereafter.

ĪĪ.