Current Status of ZH→eeX Analysis: Event Generation

Hengne Li, Roman Pöschl

LAL ORSAY

OUTLINE

- Motivation
- Beam Simulation: GUINEA-PIG
- GUINEA-PIG to PYTHIA Interface
- Cross Section Evaluation of Signal and Backgrounds
- Variables For Event Selection
- Discussions

Motivation

Higgs-Strahlung Process:

Higgs Recoil Mass:

$$m_{h^0}^2 = s + m_{Z^0}^2 - 2E_{Z^0}\sqrt{s}$$

Cross Section and Coupling Strength Measurement:

$$g^2 \propto \sigma = N/L\epsilon$$

$$E_{CM} = 230 \; GeV$$

$$M_{Higgs} = 120 \; GeV$$

Beam Simulation: GUINEA-PIG

Luminosity Spectrum Resulting from Beamstrahlung

Beam Parameters *

Ecm (GeV)	230	250	350
energy (GeV)	115	125	175
sigma _x (mm)	639	639	639
sigma _y (mm)	5.7	5.7	5.7
sigma _z (μ m)	138	150	210
Beta _x (mm)	9.2	10	14
Emitt _y (10 ⁻⁶ m•rad)	0.04	0.04	0.04

^{*}From M. Ruan, to keep persistence with his muon channel study.

GUINEA-PIG to PYTHIA Interface

• Methods:

- 1) Randomize lumi_file entries before passing it to the generators
 - BeamRand: (Hengne Li) to randomize the lumi_file
 - Beams: (Yuanning Gao), to read lumi_file in generators
- 2) Randomly pick up the entries from the complete lumi_file
 - CALYPSO*: (Daniel Schulte), randomly read and pass lumi_file entries to generators, from the author of GUINEA-PIG

^{*} Machine-Detector Interface at CLIC / Daniel Schulte, (CERN): CERN-PS-2001-002-AE; CLIC-Note-469

Cross Section Evaluation of Signal and Backgrounds

	Process	$\sigma \text{ [fb]}(N_{EVT})$		
		РҮТНІА	WHIZARD	BHWIDE
Signal	$e^+e^- \rightarrow Z^0h^0 \rightarrow e^+e^-X$	6.31(3155)	6.34(3170)	
Background	$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma_{s}^{1}$	2531[pb]		2408[pb]
		(1.266×10^9)		(1.204×10^9)
	$e^+e^- \rightarrow \tau^+\tau^- \rightarrow e^+\nu_e\bar{\nu}_{\tau}e^-\bar{\nu}_e\nu_{\tau}$	4753.5		20 71
		(2.376×10^6)		
	$e^+e^- \rightarrow W^+W^- \rightarrow e^+\nu_e e^-\bar{\nu}_e$	18.97(9485)		
	$e^+e^- o Z^0Z^0 o e^+e^-far f^{\scriptscriptstyle (2)}$	120.72(60360)		
	$e^+e^- \to Z^0Z^0 \to e^+e^-e^+e^{-3}$	2.836(1418)		

- ♦ Results consider beamstrahlung, ISR and FSR, for Ecm=230GeV
- \diamond For Backgrounds, angular acceptance of $|\cos \theta| < 0.995836$ (LDC01_05Sc, with at least 6 hits in FTD) is considered in the cross section evaluation
- ♦ For Signal, the fraction of final state two electrons within angular acceptance is 0.9892
- \Leftrightarrow Expected N_{EVT} is for an integrated luminosity of 500 fb⁻¹

 $^{^{1)}}$ Including both γ^* and Z^0 neutral currents, where, PYTHIA considers only t-channel exchange, while BHWIDE considers both t-channel and s-channel exchanges.

²⁾ $f\bar{f}$ here excludes $Z^0 \rightarrow e^+e^-$.

³⁾ At least one pair of the final state e^+e^- within the angular acceptance range.

Variables For Event Selection

- ♦ 10k events for each type of reactions
- ♦ All the plots are in log view.

Variables For Event Selection

Variables For Event Selection

Discussions

- Pre-selection is needed to reduce backgrounds to save the simulation time, e.g. bhabha scattering has a cross section 6 orders of magnitudes larger than the signal
- The kinematic cuts are not safe in the pre-selection for electrons.
 - Due to bremstrahlung, electron reconstruction inaccuracy may migrate the background events into the signal window, e.g. page 9 first plot, which means if kinematic cuts applied, the backgrounds rates may be underestimated.
- But, if angular cuts do not enough for the rejection, can the kinematic cuts be used? How to avoid the underestimation of the backgrounds?
- Event weights should be applied to reduce the simulations
- Some Central Simulations Are Needed, at least for the well know backgrounds such as Bhabha scattering because its cross section is too large!