Twiss Fitting

A least-square minimiser is used to fit the twiss and emittance at MW0X to the measured beamsizes at each wire-scanner.

MAR-12 Julien's 2D
emittance results

ex	2696 pm.rad	
bx	0.388 m	
ax	0.654	
ey	72.63 pm.rad	
by	2.739 m	
ay	1.651	

LAL results:

$$ex = 3290 \pm 1280 \text{ pm.rad}$$

 $ey = 81 \pm 26 \text{ pm.rad}$

Fitted Twiss

	MW0X	Kicker	Design at Kicker
ex	2696 pm.rad	2696 pm.rad	2000 pm.rad
bx	0.388 m	2.673 m	7.21 m
ax	0.654	0.934	1.15
еу	72.63 pm.rad	72.63 pm.rad	20 pm.rad
by	2.739 m	0.652 m	2.903 m
ay	1.651	1.534	-1.721

Vertical DR emittance was recorded as 34 pm.rad

Ellipse Plots

An attempt to recreate the ellipse plots made by SAD.

The design (x, px) ellipse is plotted in an (x, px_0) coordinate system:

$$px_0 = \alpha_0 x + \beta_0 x'$$

where 0 denotes the design twiss at MW0X.

The fitted twiss ellipse is plotted in the (x, px_0) coordinate system along with the back-propagated wire-scanner beamsizes, where their (x, x') at MW0X are:

Backups

Ellipse Plots

An attempt to recreate the ellipse plots made by SAD. The design (x, px) ellipse is plotted using the equations:

$$\varepsilon = \gamma_0 \quad x^2 + 2\alpha x x' + \beta x'^2$$

$$px_0 = \alpha_0 x + \beta_0 x'$$

where 0 denotes the design twiss at MW0X.

The fitted twiss ellipse is plotted in the (x, px_0) coordinate system along with the back-propagated wire-scanner beamsizes, where their (x, x') at MW0X are:

$$\binom{x}{x'}_{\text{ref point}} = R^{-1} \binom{\sigma_w}{x'_w}$$

x'_w is the undetermined angle variable at the wire and is related to the phase advance