Reproduce the simulation of the OTR size as function of bump amplitude

Preliminary results

3rd April 2008

Shift Tuesday 4th March 2008 (1:00 to 9:00 h)

Shift Tuesday 4th March 2008 (1:00 to 9:00 h)

\rightarrow Assumption: from 0 to 0.5 mm bump, no effect in the DR \rightarrow Let's consider this range

Parasitic measurements 19th December 2007

Parasitic measurements 19th December 2007

 \rightarrow Assumption: 0.3 mm bump corresponds to the minimum emittance, minimum displacement in QM7 \rightarrow let's consider from 0.3 to 0.8 mm bump (total range 0.5 mm)

Tracking simulations in the Extraction Line

- With bumps created with ZV9R and ZV100R
- Including non-linearity in QM7
- For different input emittances

Beam size at the OTR vs bump amplitude

Considering 0.5 mm bump:

 with nominal input emittances, beam size increase in OTR is a factor ~1.8

-with ϵ_y 4 times nominal, beam size increase in OTR is a factor ~1.2 as in the measurements