Work Report

Sha BAI 2008 -04 -08

- **1.** Increasing $\beta_{\mathsf{y}} \rightarrow$ gradual approach with looser tolerances
- **2. Reducing** $\beta_v \rightarrow$ **enhanced performance**

Variable beam size at the interaction point (Gaussian fit to core)

 \rightarrow Idem at displaced IP locations hosting other instruments

Variable **βx**, y at longitudinally displaced IP

Beam size at focal point is a function of choice of FD effective focal length (L^*) and injected beam matching

 \rightarrow L^{*} adjusted by FD strength \rightarrow injected beam adjusted by QM12,13,14,15,16

During commissioning, Honda monitor and wire scanner at displaced IP, respectively at -54cm and +39cm, with resolutions of 300-1000 nm.

Honda Monitor: 350nm – 1 micron(-540mm from IP) Carbon Wire: > 1 micron (+390mm from IP)

Study on shifted IP+0.39m and IP-0.54m:

A. for IP-54cm, use the following procedure to get the focal point:

1) Use QM12~16 to obtain:

 $\beta x = 4 \times \beta x$ nominal $\beta y = 4 \times \beta y$ nominal at the nominal IP.

- 2) Replace QM12~16 values obtained in 1) into files and fit QD, QF to obtain $\alpha x = \alpha y = 0$
- •at the nominal IP.
- • at IP displaced by 54cm (not converged, because it's nonlinear)

3) do it step by step:

each time use QD, QF values obtained in last iteration.

Example: start from initial IP with

βx=4 × βxnominal=0.016m, β y=4 × β ynominal=0.0004m

• IP-0.1m :

```
βx =0.015m, 
βy=0.0003m
```
• IP-0.2m :

```
βx=0.014m, 
βy=0.00027m
```
• $IP-0.3m$:

```
βx=0.013m, 
βy=0.0002m
```
• IP-0.4m :

```
βx =0.012m, 
βy=0.00013m
```
• IP-0.54m :

βx=0.004m, βy=0.0001m

4) fit all the five sextupoles to get: T126=0, T122=0, T346=0, T342=0, T166=0

$80 \times \beta$ ynominal at IP-54cm can be obtained by rematching...

Linear optics $\beta x = 0.004$ m, $\beta y = 0.008$ m $\rightarrow \sigma y = 307$ nm

$100 \times \beta$ ynominal at IP-54cm:

Linear optics $\beta x = 0.004$ m, $\beta y = 0.01$ m $\rightarrow \sigma y = 340$ nm

B. for the IP+39cm, use the following procedure to get the focal point:

1) use the nominal values of QM12~16 and fit QD0, QF1 in final doublet to obtain α x = α y=0.

 $KLQDOFF = -1.117399E+00$

KLQF1FF = 7.030126E-01

2) fit QM12 \sim 16 to get:

 $β$ x =0.04m, $β$ y=0.08m

Dx =0, αx =αy=0

at IP+39cm.

3) fit all the five sextupoles to get:

T126=0, T122=0, T346=0, T342=0, T166=0 do tracking to get σy=968nm at IP+39cm.

800 \times β ynominal at IP+39cm:

Linear optics $\beta x = 0.04$ m, $\beta y = 0.08$ m $\rightarrow \sigma y = 971$ nm

$1000 \times \beta$ ynominal at IP+39cm:

Linear optics $\beta x = 0.04$ m, $\beta y = 0.1$ m $\rightarrow \sigma y = 1086$ nm

Twiss of the three cases: nominal, 100 βy at IP-54cm, 800 β y at IP+39cm

Conclusion

- 1. We can get any βy at nominal IP in range $[0.25,1000]$ * nominal value
- 2. At displaced IP-0.54m and IP+0.39m, βy can be as large as is needed for the linear beam size to match the resolutions of the Honda monitor and wire-scanner, while preserving the basic features of the FFS optics

Next step

- 1. Study tunability with imperfections as function of βy ; defined procedure and collaboration with Rogelio Tomas at CERN and with Yves Rénier \rightarrow produced decks with:
	- factor 2 in both β x and β y
	- -- factor 2 in βx and factor $\,$ 4 in βy
	- -- Enlarged $β$ y by factor 10

 also interested in understanding how tuning difficulty varies as function of betas, and maybe for a little later in the case the 'factor 4' reduction on βy would need some further adjustment of the non-linearities, even using an extra sextupole or octupole, we should certainly consider that too.

- Use MADX in the future \sim

local chromaticity correction with pairs of sextupole doublets

For a quadrupole:

$$
dy' \approx -K_Q(1-\delta)yds = (-K_Qy + K_Q\delta y)ds
$$

$$
dx' \approx (K_QD_x\delta + K_Qx_\beta - K_QD_x\delta^2 - K_Q\delta x_\beta)ds
$$

For a sextupole:

$$
dx' = \left[D_x \delta x_\beta + \frac{1}{2} D_x^2 \delta^2 + \frac{1}{2} (x_\beta^2 - y_\beta^2) \right] K_S ds
$$

$$
dy' = - \left(D_x \delta y_\beta + x_\beta y_\beta \right) K_S ds
$$

If $KsDx=K_Q$ is specified, the terms of these equations in ^xδand yδvanish, so cancelling the chromatic aberration.

For the vertical plane, the compensation is straightforward. but for the horizontal plane, it is a bit more complicated. Because a second order horizontal dispersion term appears, proportional to δ^2 , of which just half compensated by this procedure.

In order to compensate fully this non-linear dispersion, one must impose that the entire chromaticity of the FFS be created once more upstream of FD, in a nondispersive region. In this way, the sextupoles run twice stronger and compensate it as well.

Increased **η'** at IP:

Purpose of the work is to increase η at IP in order to decrease the strength of the sextupoles on ATF2 final focus line , so the high order terms will also decrease.

 K_{O} =Ks \downarrow Dx \uparrow

Procedure:

• fit the angles of the bending magnets B5,B2,B1 in final focus line, to get 1.2 times of the eta prime at IP (then adjust the B1 angle to zero eta)

- refit the final doublet quads QD, QF to maintain the focus at IP $(\alpha_{x,y} = 0)$
- use matching quads QM12-16 to obtain any wanted beta functions at IP

• use TRANSPORT to calculate second order and third order contributions to the y beam size at IP

NO increase in eta prime (nominal case):

 β _y=3.0 x 10⁻⁵ m

Second order contributions to y beam size at IP

Third order contributions to y beam size at IP

Increased eta prime (by 20%):

 $\beta y = 3.0 \times 10^{-5}$ m

Second order contributions to y beam size at IP

Third order contributions to y beam size at IP

Next steps

- increase eta prime by 50%
- MADX
- optimisation code from Rogelio Tomas