Polarization Working Group

News from

heLiCal group

'Polarization' workshops at Daresbury and at Zeuthen

Optimization of baseline design

Summary

- heLiCal group
 - survived
 - good progress for helical undulator: see Jims talk yesterday
 - The 4m full scale cryomodule is in the final stages of manufacture
 - It will be completed this summer
 - The vertical magnet tests for the first ever 1.75m undulator are excellent
 - good progress for target wheel: see Leos talk yesterday
 - Operation of wheel in magnetic field ~May to Jul 08
 - Long-term operation of wheel to monitor stability ~Aug 08
 - Additional investigations using aluminium wheel or modifying conductivity of wheel rim also possible.
 - Very unlikely due to lack of funding.
 - Experiment complete by Nov 08.

Progress, cont.

UK@newsline:

- heLiCal group
 - good progress in physics updates
 - spintracking and theory
- Very successful workshop on polarization models@Daresbury
- Good progress at sources workshop@Zeuthen
- Good ideas at workshop of polarimetry and energy measurement @ Zeuthen
 - write-up for GDE under work

Physics updates

- Physics for polarized e- and e+
 - comprehensive overview given in 'POWER' report
 - hep-ph/0507011, now in press as Physics reports
 - see also executive summary at www.ippp.dur.ac.uk/~gudrid/source/
- Code updates:
 - Alexanders Mikhailichenko program 'KONN' for tracking undulator e+ from source up to acceleration
 - ennables systematic studies of undulator parameters
 - Tony's (many thanks to Tony!) updated version of CAIN
 - included polarization (full BW and initial+final states)

- ICFA Parameter Group
 'Scope Document no.1' (2003) and 'no.2' (2006): baseline
 - → 'full luminosity of 2 x 10³⁴cm⁻²s⁻¹'
 - 'beam energy stability and precision below tenth of percent level.'
 - 'Machine interface must allow measurements of beam energy and diff. lumi spectrum with similar accuracy.'
 - → 'electron beams with polarisation of at least 80% within whole energy range.'

Options:

- "e⁺ polarisation ~50% in whole energy range wo sign. loss of lumi...., Reversal of helicity ... between bunch crossings.'
- GigaZ: e⁺ polarisation+frequent flips essential; energy stability+calibration accuracy below tenth of percent level.'

Physics requirements

- Needed accuracy
 - * for most physics studies $\Delta P/P=0.5\%$ (0.25%) sufficient; for precision measurements $\Delta P/P<0.1\%$ required
- Since polarization@IP = lumi-weighted polarization ≠ polarization@polarimeter
 - Analysis of possible depolarization effects
- major component in beam-beam interaction:
 - spin precession (T-BMT)
 - spin-flip (Sokolov-Ternov) processes
- In the following: status report for deriving a method to calculate T-BMT in strong fields

Spin precession

T-BMT equation:

$$\frac{d\mathbf{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a + 1)\mathbf{B}_T + (a+1)\mathbf{B}_L - \gamma (a + \frac{1}{\gamma + 1})\beta \mathbf{e}_v \times \frac{\mathbf{E}}{c} \right] \times \mathbf{S}.$$

- \rightarrow 'a' is anomalous magnetic moment of electron a=(g-2) / 2= α /2 π + ...
- higher-order effect, radiative corrections to eeγ-vertex
- experimentally measured up to accuracy of 10-11
- So far: used medthod in CAIN and Guinea-Pig

Due to strong fields (beamstrahlung):

- ' a' expressed as function of field in a medium
- excellent work of V. Baier, V. Katkov
- several approximations and assumptions have been made

Anomalous magn. moment of e

Contributions to the QED vertex

at 1-loop order:

vertex has impact on a, but has not been used in current method

Alternative to derive a in beam-beam

- derive H in external field
 - → remember H-atom: spin-orbit term (I*s), interaction terms (B*s,B*I)
 - often A²-terms neglected, important for strong fields (laser)
- use Furry representation
 - use explicit fermion operator in external field
 - 'usual' Feynman rules in perturbation theory
 - explicit fields in beam-beam zone required
 - straight forward.....but mathematically rather complex
- status: not yet final results, but hopefully at EPAC08
 - in collaboration with T. Hartin, also on ST-effect

Further news from workshops

- 1. @Cockcroft: Polarization models at LC
 - excellent cross talk between machine+theory people
 - triggered further questions on QED in beam environment
 - suggestion of having a 'QED' workshop (maybe at Durham) to discuss the different approaches, estimates and used models
 - of course, such things are 'generic' LC items

Positron source @ Zeuthen

- Shy concerns
 - excellent: Marc and Nick attended the meeting
 - important topic: costs
 - → however, one should keep in mind that we need best ILC physics performance in order to be competitive to an LHC (SLHC?) from 2015 onwards......
- all ILC physics should be seen on basis of possible LHC results!

Determination of Higgs properties

- Expectations at the LHC:
 - → Higgs mass: up to ∆m_H =100-200 MeV
 - Higgs couplings: 15%-40% (with some model assumptions)
 - Higgs spin: challenging
- Expectations at the ILC:
 - at top threshold (√s=350 GeV) and at √s=500 GeV up to ∆m_H=50 MeV!
 - absolute couplings: 1-5 %
 - Establishing of ew sym. breaking: triple Higgs couplings at 500 GeV up to 22%
 - Higgs spin: clear access via threshold scan
 - non-Standard Higgs properties: CP-properties
 - disentangling of light SUSY Higgs and SM Higgs via precision measurements of couplings

Higgs couplings

Couplings determination: high rates and lumi needed

- measurement of couplings in Higgs-strahlungs process at √s=350 GeV
- → beam polarization (80%,0) → (80%, 60%): improvement by about 30%.
- triple Higgs couplings: e.g. in HHZ at √s=500 up to 22% (unpolarized beams)
- estimate: further gain of 30%-50% precision if both beams polarized

Optimization of ILC baseline

- ILC baseline uses helical undulator
 - even without any changes (since spin rotators and OMD collimator included): small polarization available 'for free'
 - → about 30%
 - → new simulations: if bunch compressor used, capture efficiency can be increased by factor 2 and polarization raises up to 45%!
- Two choices:
 - either flipping of helicity is required (either via solenoids, slow but ok for beginning or via kickers upstream DR)
 - or destroy polarization completely
- Having LHC results in mind..... little efforts to exploit pol. e+ more useful

Polarimetry+Energy workshop

- Important topic: are both up- and downstream polarimeters required?
 - accuracy of <0.5% required</p>
 - both polarimeters are complementary,....., needed
- Downstream:
 - access to depolarization
- Upstream:
 - higher counting rate, better time granularity
- Studies and executive summary for GDE under work for justifying both polarimeters
 - we need both!

Physics @ calibration in push-pull

Baseline ILC includes Z-pole operation for detector calibration, but not for physics data. However, there are good arguments to use a modest (pre-GigaZ) Z-pole data sample, including calibration data, for

- Polarimeter calibration. Can check luminosity-weighted polarization extrapolated from polarimeters with a physics-based measurement using the Blondel scheme from an A_{LR} measurement. (Can also check the A_{IR} result obtained against the SLD measurement.)
- Energy spectrometer calibration. Z-pole mass determination from an energy scan can check the calibration. This was an important check at SLD and resulted in a small correction to the energy measurements.
- 3. Physics measurements. ILC luminosity at Z-pole should be ~8·10³²cm⁻²s⁻¹, which is ~40 times larger than at LEP and ~400 times larger than at SLC. Z-pole calibration data could be used to improve A_{IR} and many other Z-pole measurements. If this is successful, then a dedicated Z-pole run of at least a week will be desirable. And will be good preparation to evaluate capability for Giga-Z. Excellent polarimetry, energy and luminosity measurements will be needed for such a program.
- strong motivation exists to include Z-pole operation for physics in ILC baseline!

Use of Z-calibration data

Minimal changes to the baseline:

- need 2 independent polarimeters
- and 2 independent energy spectrometetrs during calibration
- flipping kickers desirable
- whether flipping via solenoid is sufficient is still under discussion

But expectations:

The z-pole luminosity should be 7-8E32 (at 90 GeV CM), in comparison with nominal 2E34 at 500GeV CM. In one day of calibration data a factor 10 more zees will be produced than in the 100 days of SLD/SLC data taking.

The z-pole calibration data at the ILC can result in a factor 5 or 6 smaller error on A_{lr} than achieved by SLD.

Specific short paper for research director under work

Conclusion

- Polarization business exciting (cannot be stopped by Mason!)
- Undulator+target prototypes under active work at Daresbury and RAL
- Progress in theoretical description of depolarization effects
- Required: balance between cost and reduction of physics
 - → ILC has to face possible LHC/SLHC results
 - physics requirements of parameter group should be fulfilled
 - frequent cross-talk between machine and physics people absolutely required
- Use of pol. e+ with 45% already with slightly changed baseline
- Use of Z-calibration data during push-pull with minor efforts