

EUROTeV 4th Scientific Workshop Summary & Conclusion

E.Elsen

4th Scientific Meeting, Uppsala, Aug 26-28, 2008

A Noble Environment

- Oldest Swedish
 University founded in 1477
- Uppsala a place of academic excellence
- Key interest in understanding nature ... and its anatomy and so built appropriate laboratories

Gustavium

EUROTeV – a Design Study

- EUROTeV has been special in the Global Design effort
 - it was approved before the technology decision
 - to do scientific studies for the **design** of a TeV linear collider
- It hence was not the result of a "work breakdown structure" but rather matched the research interest of the individual institutes
 - nonetheless EUROTeV constitutes an essential part of the European contribution to the Reference Design of the ILC
 - EUROTeV had a lot of freedom to pick up the topics and still continue in a broader approach, including CLIC

Integration into the Global Process

Final Scientific Meeting

• 2008

• Uppsala

after meetings

•2007

• LCWS Hamburg

•2006

LAL Orsay

• 2005

Royal Holloway

EUROTeV in the public

Year	EUROTeV Reports
2005	28
2006	106
2007	73
2008	>53

- EUROTeV yields 7770 entries in Google (27.8.2008)
- Many contributions at the large accelerator conferences: EPAC, PAC, ...
- Fostered new collaborations

• ATF

• CesrTA

EUROTeV Engagements

Looking at the work packages

- from some distance
- with a personal view / emphasis
 - May serve as a start to present the findings in the Scientific report
 - by no means exclusive

WP2 – Beam Delivery System

- Significant contributions to the reference design of the 14 mr solution
- Home of the small angle studies
 - 2 mr crossing angle
 - Head-on collision

We should properly document the small angle solution!

WP3 – Damping Rings

- Significant contributions to the down-select from various options
 - dog-bone to rings
 - size of rings
 - selection of the many variants
- Electron cloud and FII studies
- Fast Kicker

Work to be continued for Dafne and CesrTA

WP4 – Polarized Positron Source

- Undulator Prototype
 - superconducting
- Polarization
 - Generation
 - Transport
 - Measurement

WP5 – Diagnostics

- Beam monitoring at all scales
 - a few nanometer to hundreds micrometer
 - Laserwire
 - Energy Measurement
 - Polarization

A whole research field originated: experimenting at test facilities

WP6 – Integrated Luminosity Performance

- (almost) full simulation of the beam transport
 - from bunch compressor to post-collision diagnostics
- addressing many issues in the design
 - curved vs laser straight
 - failure modes
 - halo
 - collimation

• . . .

We have not yet demonstrated íntegrated lumínosíty as claímed. Importance of ATF etc.

WP7 – Metrology and Stability

- Understanding vibrational modes
 - and mitigation

• ...

- Characterizing sites and devices
 - incl. cold cryomodule
- Rapid survey on a large scale

Tests at ATF & DESY

WP8 – Global Accelerator Network ...

- Significantly advance the concept of remote participation
 - understanding human hesitation
 - Prototype building

- Remote control rooms now become a reality
 - FNAL LHC control center
 - CALICE control room

turning night into day-shift

EUROTeV 2005 – 2008 Schedule

ID	Task Name	-	¥1		Y2				Y3				Y4				¥5	
		Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qtr -	4 Qtr 1	Qtr 2	Qtr 3	Gtr 4	Gtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Gtr 2	Qtr 3	Qtr 4	Qtr 1
34	WP4: Polarised Positron Source PPS		-													-		,
35	1st workshop	1		+														
36	2nd workshop	1					•											
37	3rd workshop	1										•						
38	Helical undulator R&D HURD	1	—			-				-			-				_	▶
39	Source performance modelling PPMODL	1	—			-	_	•										
40	SpinFlip system lattice design SPINF	1	—			-	_	•										
41	Mech. Design of photon target and collimator PTCD	1	—			-							-					▶
42	Low energy polarimeter LEPOL	1	—			-							-				_	▶
43	WP5: Diagnostics DIAG	1	-															,
44	1st workshop			•														
45	2nd workshop						•											
46	3rd workshop											•						
47	Laser based beam profile monitor LBPM		—			-							-				_	
48	Confocal resonator CFBPM		—			-							-				_	
49	Precision transformer PTBPM	1	—			-							-				_	▶
50	Wide-band currenct monitor WBCM	1	—			-							-				_	▶
51	Timing and phase monitor TPMON	1	—			-							-				_	I
52	Precision energy spectrometer ESPEC	1	—			-							-				_	I
53	High-energy polarimeter HEPOL	1	—			-							-				_	I
54	Fast luminosity monitor FLUM	1	—			-						•						

Most dates of deliverables have been moved to end 2008

Finishing up

- Please provide the reports for those areas where we promised a "deliverable"
 - We need a reference everywhere
 - Have discussed individual solutions in cases where the goals have not been met literally
 - The reports are necessary latest for the Annual Report for which the first version will be prepared before Christmas
- Annual Report
- Scientific Report
 - The EUROTeV Book in your shelf

Conclusion

- EUROTeV has been quite a success story
 - Let us conclude properly
 - Scientific report end of the year
 - Make good use of the financial resources
- Collaboration will continue in various forms
 - to support ILC in TDP I
 - to carry accelerator research forward

No reason to say good-bye sínce we meet agaín.

A big Thank-you for the support and fun with EUROTEV