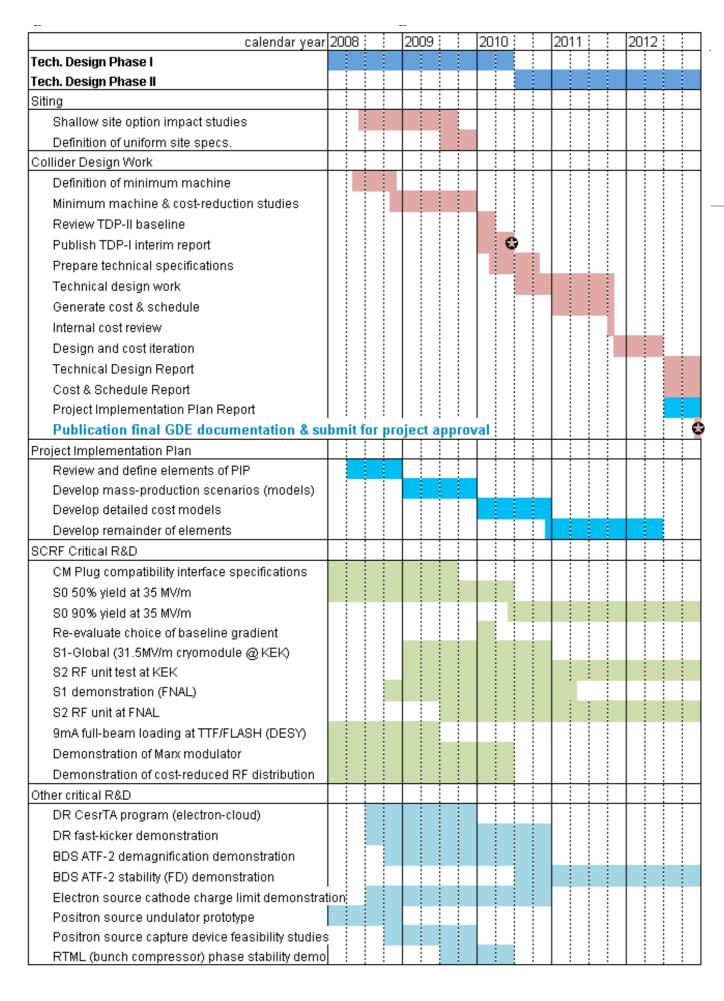


Status of EUROTeV

E.Elsen


EUROTeV in hindsight

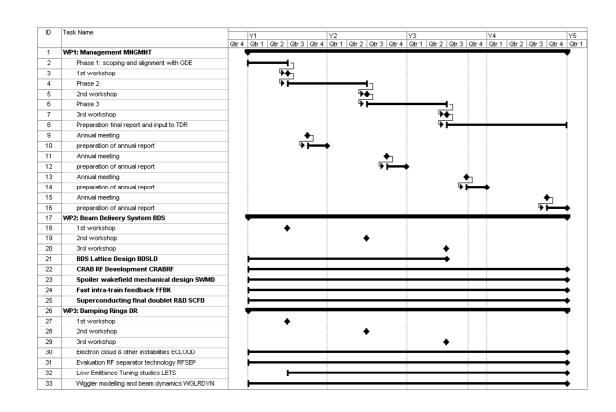
- Success as a research "institution"
 - EUROTeV has provided a wealth of reports on accelerator issues
 - Beam dynamics, instrumentation and optics, vibrations & stabilisation
 - Positron source
 - Damping rings
 - Global collaboration tools
 - Finding widespread applications in remote control rooms
- Many contributions to
 - Conferences: PAC, EPAC etc.
 - Publications readily accessible via SPIRES, ILCDocs

EUROTeV – an Accelerator voice in Europe

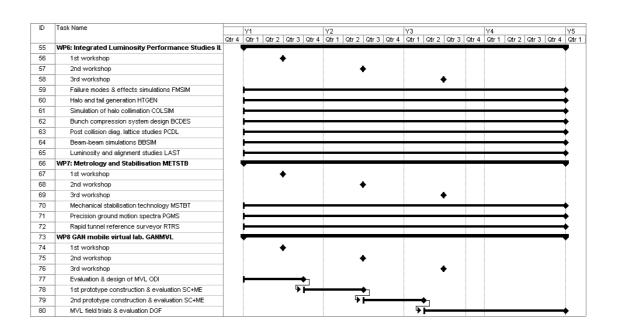
- The European contributions to the RDR are predominantly based on **TESLA** or **EUROTeV** work and the respective references.
- Many of the CLIC reports are EUROTeV reports
- Other regions, Asia and America, recognize EUROTeV as a Research Institution
- However, already in the previous meeting at Daresbury we recognized that a Design Study is not well adapted to the Engineering Phase for the ILC that then was about to start.
 - SCRF required serious attention in Europe → FP7 PP ILC-HiGrade, starting 2008
 - Use of infrastructures for engineering exercises → FP7 IA EuCARD, starting 2009
- The ILC has now launched the Technical Design Phases I and II

TD Phase Schedule

- Emphasis on two critical aspects
 - SCRF
 - Damping rings

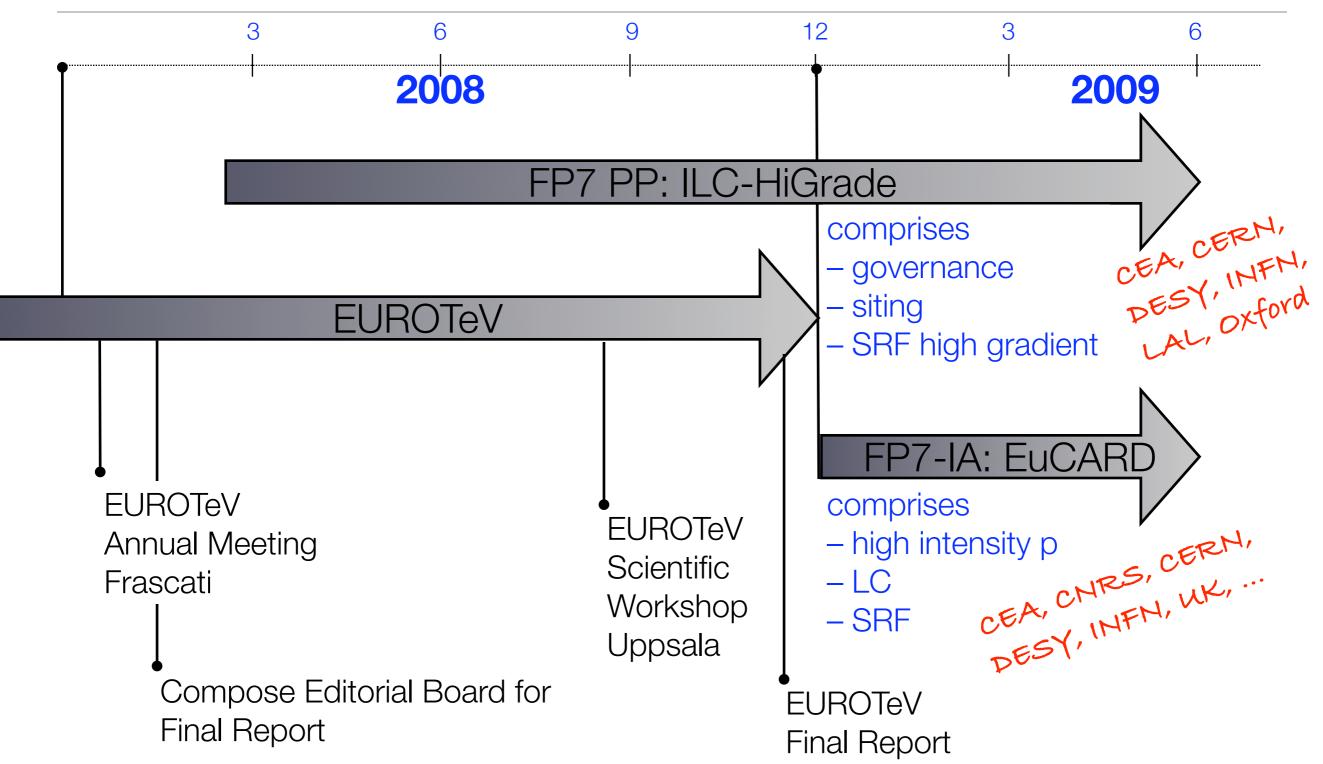


EUROTeV in Technical Design Phase of ILC


- EUROTeV extended by one year
 - Prolongation has been granted
 - EUROTeV continues till 31.12.2008
 - Most end-of-project deliverables have been deferred to end of 2008
 - Will take stock of the status during this meeting
 - Prolongation helps to overcome resource shortages due to the end 2007 developments in the UK
 - We should make sure that we maintain the strong European role in the ILC and more generally Linear Colliders that we have had in the past.

EUROTeV 2005 - 2008 Schedule

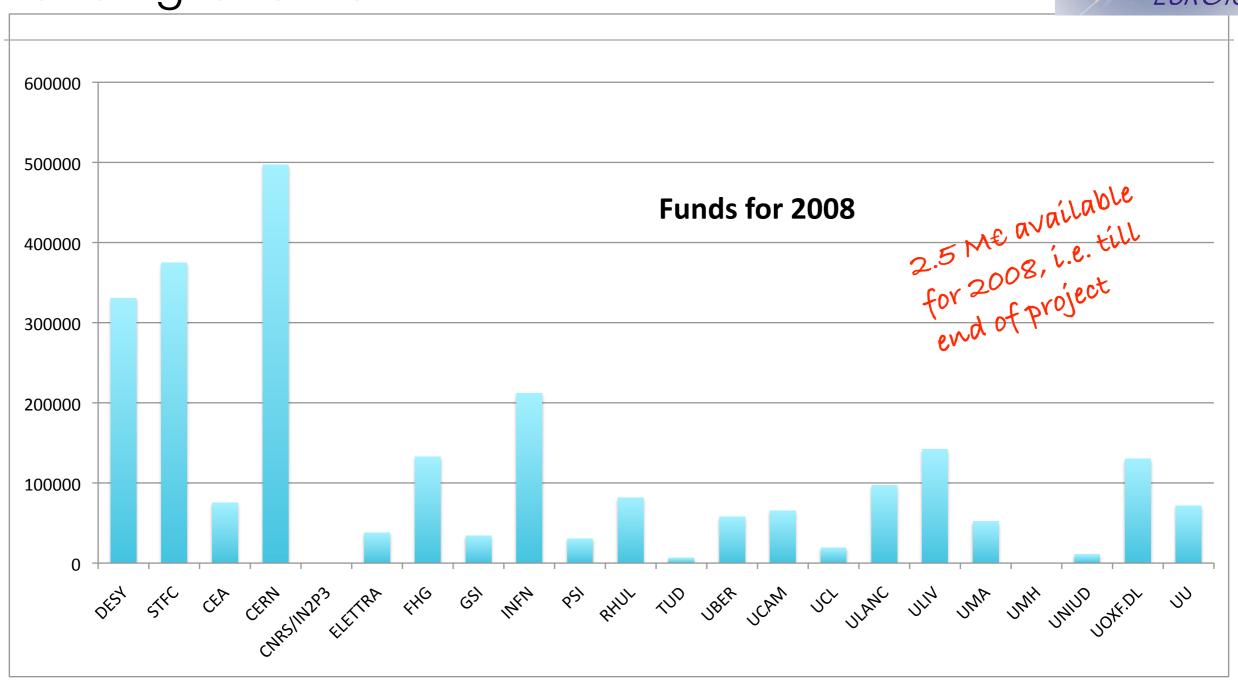
ID	Task Name		Y1				Y2				Y3					Y4					Y5
		Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr	3 Qtr 4	1 Qt	tr 1 0	etr 2	Qtr 3	Qtr 4	Qtr '	1 Q	tr 2	Qtr 3	Qtr 4	Qtr
34	WP4: Polarised Positron Source PPS		~																		7
35	1st workshop			•	•																
36	2nd workshop								•												
37	3rd workshop												4	•							
38	Helical undulator R&D HURD		\vdash								+				-						•
39	Source performance modelling PPMODL		\vdash						•												
40	SpinFlip system lattice design SPINF	1	-				-		•												
41	Mech. Design of photon target and collimator PTCD	1	-				-				÷				+	-	_				÷
42	Low energy polarimeter LEPOL	1	-				-				÷				+	-	_				+
43	WP5: Diagnostics DIAG	1	•								÷				+	1					÷
44	1st workshop				•																
45	2nd workshop								+												
46	3rd workshop												4	•							
47	Laser based beam profile monitor LBPM		\vdash								+				+	-					•
48	Confocal resonator CFBPM		\vdash								+				-	-					•
49	Precision transformer PTBPM	1	-								+				-	-	_				•
50	Wide-band currenct monitor WBCM	1	-								+				-	-	_				•
51	Timing and phase monitor TPMON	1	\vdash				-				-				-	-					•
52	Precision energy spectrometer ESPEC	1	\vdash				-				-				-	-					•
53	High-energy polarimeter HEPOL	1	-								-				+-	-	_				•
54	Fast luminosity monitor FLUM	1	_										_								



Most dates of deliverables have been moved to end 2008

from amended contract

EUROTeV in 2008 and beyond


EUROTeV Annual Report 2007

- The scientific part has been accepted
 - In approaching the final report we had already used a somewhat more formal approaches in composing the text
 - structure, layout and format
- The financial part has been accepted eventually
 - Experienced very detailed comments with many minor actions to be taken
 - The transition CCLRC STFC in the year necessitated two independent financial reports

Finances 2008

- Distrubution of funds amongst institutes
 - CNRS and Mannheim have exhausted their foreseen budget
 - for some institutes the 2007 accepted claims to the EC exceeded the foreseen amounts allocated in the initial distribution of funds between institutes
 - those institutes have received no further funding but are evidently required to send their deliverables
- Payments made in 2008
 - compensate for 2007 expenditure
 - amount to 80% of the remaining amount for the project and institutes
 - rest to be balanced with the 4th Annual Report
 - reports due mid February

Funding Overview

Note that only 80% have been distributed as pre-payment

European Court of Auditors

- The European Court of Auditors visited DESY to look at EUROTeV
 - in December 2007
 - to asses whether to carry out a performance audit of the European
 Commission
- They decided to do so and
 - came to DESY in July 2008
 - to carry out the performance audit
- We received the draft of the assessment
 - made strong reference to the role of EUROTeV in the global context
 - based on original recommendations of the referees (acceleration technology independance, difficulty of hiring skilled postdocs quickly, etc.)
 - report gave evidence of good and adequate support from Brussels

Conclusion

- EUROTeV continues to hold a strong position in accelerator development in Europe in 2008
 - Have to conclude properly
 - Scientific report end of the year
 - Make good use of the financial resources
- Future projects are in place
 - to support ILC in TDP I
 - to carry accelerator research forward