CLIC Beam Delivery System

R. Tomás, H. Braun, A. Latina, G. Rumolo and D. Schulte

September 2008

Contents

- The CLIC 3TeV BDS:
 - Beam diagnostics section
 - Collimation section
 - Final Focus System: 4.3m and 3.5m L*
 - ATF2 ultra-low betas
 - BDS Collective effects
- The CLIC 500GeV BDS

Diagnostics: emittance measurement

Emittance measurement

Simulations by I. Agapov: 3 trains, 3 wires and 10% error on beam size assumed.

Diagnostics inside collimation

Layout & photon collection

Rogelio Tomás García

CLIC Beam Delivery System – p.6/24

CLIC compact energy measurement

Collimation section

Cleaning inefficiency for new parameters under investigation by J. Resta.

Rogelio Tomás

García

Collimator survival (J. Resta, L. Fernandez)

Be thermal fracture limit = $370K \rightarrow Good!$

Rogelio Tomás García

CLIC Beam Delivery System –

p.9/24

Collimation wakefields

Rogelio Tomás p.10/24

Final Focus System with L*=3.5m

Final Focus Systems, 3.5m versus 4.3m L*

Rogelio Tomás García

Saturation of the peak luminosity

 \rightarrow With the current beam parameters further reductions of IP beam size do not increase peak lulminosity

CLIC Beam

Delivery System

p.13/24

Alignment of the collimation section

 \rightarrow Dispersion Free Steering works in the collimation section.

The more complex FFS

The FFS is the most complex section. Rather than align the FFS more general tuning algoritms must be

Luminosity after tuning

80% of the seeds give more than 80% of the design luminosity $\rightarrow 20\%$ fail.

ATF2 ultra low betas: Tuning difficulty

Project	Status	σ_y^* [nm]
FFTB	Measured	70
ATF2	Design	37
ATF2 pushed	Proposed	<26
ILC	Design	6
CLIC 500GeV	Design	3

Does tuning difficulty scale as $\sigma_y^{*^{-1}}$? Both ILC and CLIC need as low ATF2 σ_y^* as possible. What is the minimum achievable σ_y^* in ATF2?

On-going optimization with MAPCLASS

Resistive wall in the BDS

- It amplifies the incoming jitter of the beam
- and it decreases for larger beam pipes $\left(\propto \frac{1}{r^3}\right)$
- Conservative estimates by D. Shulte and G. Rumolo suggest r=8mm

CSR in the BDS?

CSR module in PLACET by E. Adli.

Negligible effect, also from formula:

$$\delta E > \propto rac{r_e q L E_0}{e \gamma (R^2 \sigma_s^4)^{1/3}} pprox 1 \; MeV$$

Rogelio

Tor

CLIC Beam Delivery System – p.20/24

CLIC 500GeV BDS: a proposal

Collimation section can be scaled by a factor 2. Dispersion and efficiency still to be optimized.

- Convergence to an optimized BDS design
- The challenge remains to verify tuning in realistic simulations with dynamic effects
- Lots to learn from ATF2 experience
- and many details to address...

Workplan towards 2010 & collaborators

- FFS tuning and dynamic effects simulations: lots of work and need of new ideas (2010)
- ATF2 regular experience (2010) and ultra-low βs (2011)
- Collimation efficiency validation for new parameters at 3TeV (end 2008) and for 500GeV (2009)
- Final quadrupole design validation (2009)

Workplan towards 2010 & collaborators

- Polarization measurement design (2009)
- Post-collision line and dump design (2010)
- Collective effects review (2009)