

ILC DR vacuum system related problems and solutions

Oleg B. Malyshev

ASTeC / CI STFC Daresbury Laboratory UK

26-28 August 2008 Final EUROTeV Scientific Workshop, Uppsala University, Sweden

Outline

- DR Vacuum requirements
- Ion induced pressure instability in positron DR
- Vacuum vs. e-cloud

Vacuum required for ILC DRs

- The need to avoid fast ion instability leads to very demanding specifications for the vacuum in the electron damping ring [Lanfa Wang, private communication]:
 - < 0.5 nTorr CO in the arc cell,
 - < 2 nTorr CO in the wiggler cell and
 - < 0.1 nTorr CO in the straight section
- In the positron damping ring required vacuum level was not specified and assumed as 1 nTorr (common figure for storage rings)

Main results of the modelling with SR only

- To reach 0.5 nTorr CO in the arc cell after 100 A hrs beam conditioning it would require:
 - a pump with S_{eff} = 200 l/s every 5 m in stainless steel vacuum chamber

or

- a pump with S_{eff} = 20 I/s every 30 m in TiZrV NEG coated vacuum chamber
- NEG coating of vacuum chamber along both the arcs and the wigglers as well as a few tens meters downstream of both looks to be the only possible solution to fulfil vacuum requirement for the ILC dumping ring

O. Malyshev. Vacuum Systems for the ILC Damping Rings. EUROTeV Report-2006-094.

Main results of the modelling with SR only

Ideal vacuum chamber for vacuum design

(for the electron ring and, where possible, for the positron ring):

- Round or elliptical tube
 - Cheapest from technological point of view
- No antechamber if SR power can absorbed with vacuum chamber wall cooling
 - Beam conditioning is most efficient
 - Easy geometry for TiZrV coating
- NEG coated
 - Requires less number of pumps with less pumping speed
 - 180°C for NEG activation instead of 250-300°C bakeout
 - Choice of vacuum chamber material (stainless steel, copper and aluminium) does not affect vacuum in this case
 - Residual gas CH₄ and H₂ (almost no CO and CO₂)

O. Malyshev. Vacuum Systems for the ILC Damping Rings. EUROTeV Report-2006-094.

Ion induced pressure instability in the ILC positron dumping ring

6

What is the ion induced pressure instability

where Q = gas desorption, $S_{eff} = \text{effective pumping speed},$ $\chi = \text{ion induced desorption yield}$ $\sigma = \text{ionisation cross section},$ I = beam current.

$$\chi = f(E_{ion}, M_{ion}, material, bakeout, ...)$$
$$E_{ion} = f(N_{bunch}, \tau, T, \sigma_x, \sigma_y, ...)$$

Critical current

O.B. Malyshev

Ion energy at DR

		Arc	Straight	Wiggler
σ_{x} (m)	max	1.3·10 ⁻³	1.3·10 ⁻³	2.7·10 ⁻³
	min	6.5.10-4	2.7.10-4	1.9.10-4
$\sigma_{y}(m)$	max	8.9·10 ⁻⁶	1.0.10-5	5.5·10 ⁻⁶
	min	5.6 ·10 ⁻⁶	5.6·10 ⁻⁶	3.8·10 ⁻⁶
E (eV)	max	265	320	340
	min	220	220	320

Ion stimulated desorption yields

Impact ion	χ , (molecules/ion)							
	H ₂	CH ₄	СО	CO ₂				
316LN stainless steel								
H ₂ ⁺	0.07	0.005	0.05	0.007				
<i>CH</i> ₄ ⁺	0.43	0.04	0.45	0.067				
CO +	0.64	0.06	0.80	0.12				
CO ₂ +	0.77	0.08	1.12	0.17				
Pure aluminium								
<i>H</i> ₂ +	0.18	0.008	0.07	0.022				
<i>CH</i> ₄ ⁺	1.1	0.056	0.67	0.20				
CO +	1.6	0.088	1.2	0.36				
CO ₂ +	1.9	0.114	1.7	0.50				
Ti alloy								
<i>H</i> ₂ ⁺	0.13	0.002	0.04	0.007				
<i>CH</i> ₄ ⁺	0.80	0.015	0.38	0.067				
CO +	1.2	0.024	0.68	0.12				
26-28 August 2008	Final EUROTe	V Scientific Uppsala Wo	rkshop, University, Sweden 0.95	O.B. Malyshev 0.17	10			

Model

• Solving the system of N equation in quasi-static conditions, where $V dn/dt \approx 0$, for gas densities $n_i(z)$ one can find gas density inside the vacuum chamber.

26-28 August 2008

.

Solution for two-gas model

$$\begin{cases} n_{1}(z) = \frac{q_{2}d_{1} + c_{2}q_{1}}{c_{1}c_{2} - d_{1}d_{2}} + k_{1}e^{\sqrt{\omega_{1}z}} + k_{2}e^{-\sqrt{\omega_{1}z}} + k_{3}e^{\sqrt{\omega_{2}z}} + k_{4}e^{-\sqrt{\omega_{2}z}}; \\ n_{2}(z) = \frac{q_{1}d_{2} + c_{1}q_{2}}{c_{1}c_{2} - d_{1}d_{2}} + K_{1}e^{\sqrt{\omega_{1}z}} + K_{2}e^{-\sqrt{\omega_{1}z}} + K_{3}e^{\sqrt{\omega_{2}z}} + K_{4}e^{-\sqrt{\omega_{2}z}}; \\ \text{where } \omega_{1,2} = \frac{1}{2} \left(\frac{c_{1}}{u_{1}} + \frac{c_{2}}{u_{2}} \pm \sqrt{\left(\frac{c_{1}}{u_{1}} - \frac{c_{2}}{u_{2}} \right)^{2} + 4\frac{d_{1}d_{2}}{u_{1}u_{2}}} \right); \\ \text{with} \\ q_{1} = \eta_{1}\Gamma; \quad c_{1} = C_{1} - \frac{\chi_{A_{1},A_{1}^{*}}I\theta_{A_{1}}}{e}; \quad d_{1} = \frac{\chi_{A_{1},A_{2}^{*}}I\theta_{A_{2}}}{e}; \\ q_{2} = \eta_{2}\Gamma; \quad c_{2} = C_{2} - \frac{\chi_{A_{2},A_{1}^{*}}I\theta_{A_{2}}}{e}; \quad d_{2} = \frac{\chi_{A_{2},A_{1}^{*}}I\theta_{A_{1}}}{e}. \end{cases}$$

Solving this inequality for the beam current *I* one can find that the beam current must be below so-called critical beam current, I_c , which is a solution for the equation

$$c_1 c_2 - d_1 d_2 = 0$$

12

O.B. Malyshev

Critical current

The ion stability for different vacuum chamber materials, I_{max}=0.4 A

Vacuum chamber	І _с , (А)	I _c / I _{max}	Domin. gas	Stable or not			
Distance between pumps L = 6 m, ID = 50 mm							
316LN	1.0	2.5	СО	Yes			
Pure Al	0.5	1.25	СО	No			
Ti alloy	1.1	2.8	СО	Yes			
Distance between pumps L = 6 m, ID = 60 mm							
316LN	1.24	3.1	СО	Yes			
Pure Al	0.64	1.6	СО	No			
Ti alloy	1.4	3.5	СО	Yes			
Distance between pumps L = 10 m, ID = 50 mm							
316LN	0.47	1.2	СО	No			
Pure Al	0.24	0.6	СО	No			
Ti alloy	0.53	1.3	СО	No			
Distance between pumps L = 40 m, ID = 50 mm							
NEG coated	5	12.5	CH ₄	Yes			
26-28 August 2008 Final EUROTeV Scientific Uppsala Workshop, University, Sweden O.B. Malyshev 14							

Pressure instability conclusions:

- Ion energy = ~300 eV
- For given parameters and large uncertainties, there is a possibility of ion induced pressure increase and even ion induced pressure instability in positron damping ring if pumping is insufficient.
- Use of TiZrV coating fully eliminates the probability of the ion induced pressure instability.

Vacuum vs. e-cloud

26-28 August 2008

16

How the e-cloud affects vacuum

18

How the e-cloud affect vacuum

- The electron flux Φ ~10¹⁶ e⁻/(s·m) with E≈200 eV (0.3 W) will desorb approximately the same gas flux as the photon flux of ~10¹⁸ γ/(s·m) from a DR dipole.
- If the electron simulated desorption is larger than photon stimulated desorption, that should be considered in vacuum design and conditioning scenario.
- Gas density will increase => gas ionisation will also increase =>
 - Electrons are added to e-cloud
 - Ions are accelerated and hit the wall of vacuum chamber => ion induced gas desorption and secondary electron production
- Gas density increase may change e-cloud density.

If e-cloud is too large in a round tube

- Defining what is the main source of electrons:
 - Photo-electrons
 - Geometrical: reduction or localisation of direct and reflected photons
 - Surface treatment, conditioning, coating
 - Secondary electrons
 - All possible solution discussed during this workshop
 - Gas ionisation
 - Surface treatment and conditioning
 - Low outgassing coating
 - Better pumping
- A complex solution for vacuum and e-cloud problem:
 - Good solution against Photo-electrons or Secondary electrons might lead to higher gas density and higher gas ionisation, and vice versa.

W. Bruns's results for the arc

SEY	q [e ⁻ /m ³]				Power [W/m]			
	PEY [e ⁻ / (e ⁺ ·m)]				H	PEY [e-	/ (e+·m)]	
	10-4	10-3	0.01	0.1	10-4	10-3	0.01	0.1
1.1	2·10¹¹	$2 \cdot 10^{12}$	1.10^{13}	5.1013	0.3	3	30	80
1.3	3.10^{12}	$2 \cdot 10^{13}$	3.10^{13}	5.1013	2	30	80	100
1.5	3.10^{12}	5.1013	5.10^{13}	5.1013	80	80	100	100
1.7	5.10^{12}	5·10 ¹³	5.10^{13}	5.1013	80	100	100	100

Increase of both PEY and SEY lead to multipacting, pressure above 10⁻⁸ torr might also be important in e-cloud build up

PEY (e-/e+) to be used in e-cloud models for DR

	Inside mag B ≠ 0	inets	Straights shortly downstream magnet B = 0		
Vacuum chamber	Tubular	With ante- chamber	Tubular	Solenoid field	With ante- chamber
Dipole SR $\Gamma = 0.9 \gamma/e^+$	3·10 ⁻⁴ − 0.065	3·10 ⁻⁶ – 6.5·10 ⁻³	0.01–0.1	0.01–0.1	10 ⁻⁴ -0.01
Required max. PEY	10-4	10-4	?	??	?
Wiggler SR $\Gamma = 10 \gamma/e^+$	3·10 ⁻³ − 0.65	3·10 ⁻⁵ – 6.5·10 ⁻²	0.1–1	0.1–1	10 ⁻³ –0.1
Required max. PEY	10-4	10-4	?	??	?

O.B. Malyshev and W. Bruns. ILC DR vacuum design and e-cloud. Proc. of EPAC08, Genova, Italy, 2008, p. 673.

SEY vs vacuum design

- SEY could be lowered by surface coating
 - TiZrV (structure, morphology, activation)
 - TiN (structure, morphology, stability to oxidation)
- Surface conditioning
 - SR removes an oxide layer -> bare metal SEY (see results of Mauro at al. for Cu – this workshop)
 - Etching might be not good for vacuum
- Geometry of vacuum chamber
 - Grooves difficulty for coating
 - Antechamber more expensive than a tubular chamber (special shape, flanges, absorbers...)
- Electrodes
 - feedthroughs more vacuum leaks,
 - insulating material to be vacuum tested on outgassing
- Solenoid field
 - Wires + power supply -> cost

O.B. Malyshev

Vacuum Priority chain for suppressing the e-cloud

• NEG coated round (or elliptical) vacuum chamber.

Passive anti-e-cloud tools:

- KEKB-type ante-chamber (to reduce PEY) with NEG coating
- Grooves TiZrV with NEG coating (to reduce SEY).
 - TiN coated round (or elliptical) vacuum chamber.

Active anti-e-cloud tools:

- Solenoid field along NEG coated straights
 - Solenoid field along TiN coated or uncoated straights
 - Electrodes and insulating materials

Accelerator Science and Technology Centre

What is TiZrV and TiN coating? A few SEM examples

Final EUROTeV Scientific Uppsala Workshop, University, Sweden

24

O.B. Malyshev

Conclusions for vacuum vs. e-cloud

- E-cloud modelling for field free regions are needed to specify vacuum chamber design
- What kind of TiZrV and TiN coatings is used in e-cloud test
 - surface characterisations with SEM, XPS, RBS, etc.
- Simple solutions are preferable:
 - coating, KEK-type antechamber.
- Ante-e-cloud means should not
 - compromise vacuum performance
 - cause ion induced instability
 - increase the cost