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lons production

Sources of ions production

» The main source of ions comes from the inelastic
collisions of the electron beam with the
molecules of residual gas in vacuum pipe

» Tunneling ionization due to the collective electric
field of the bunch

» Compton scattering of the synchrotron radiation
on the electrons of residual gas molecules



lons production

The cross section of the collisional ionization,

o, =47Z'(ij [Cl( 12 In( P 2)—1]+C—§}
mc pe 1=-p b

And the time it takes for one circulating particle
to create one ion is given by

the molecular density

n_ =3.22x10%2P.

1
fool n,cpo;
Cross sections of collision ionization for ILC damping rings
( nominal beam energy: 5GeV)
Molecule A C, C, o.[10%°m?] P [10° Torr] n. [10¥?m?] T [sec]

H, 2 0.50 8.1 0.31 0.75 24.15 4.39
CO 28 3.70 35.1 1.86 0.14 4,51 3.97
CO, 44 5.75 55.9 2.92 0.07 2.25 5.06
CH, 16 4.23 41.85 2.16 0.04 1.29 11.97




lon trapping instabllity
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lon trapping occurs when ions are trapped turns by turn in the potential well
of the beam

lons accumulate until stabilized by neutralization, second ionization, etc.

The adverse effects of ions include the beam emittance growth, beam lifetime
reduction, tune shift and tune spread etc

These phenomena have been observed in many existing machines (ALS,
PLS,KEK-PF,SRRC,NSLS-VUV, PEPII, BEPC etc.)

lon trapping can be cured by introduction of a gap in the bunch trains.




Fast ion instability
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In high current storage rings or linacs
with long bunch trains, the ions
accumulation during a single
passage of bunch train is significant.

This leads to fast ion instability (FII),
which is noticeable in the ultra-low

emittance (2pm) and high current
damping ring operation for the ILC.

Linear theory of FIl was developed by
Raubenheimer, Zimmermann,
Stupakov, etc.

This instability has been confirmed \
experimentally in some facilities such . Positron Bunch
as ALS, TRISTAN AR, PLS, Spring-

8, KEKB HER, ATF DR, PEP II, etc.

Atomic
Electrons



Vertical RMS size (jm)
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Figure 5. Bunch size measured along
for three different cases of 1.2 nTorr. 2.1 nTorr, and
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Figure 2. Snapshots taken every 4 usec before and after
the turn-off of the ion pumps. Total time span in
horizontal direction is 25 psec (6.4 mm in spatial unit),
and 500 nsec in vertical direction. a) Snapshots taken
at nominal condition. Very weak oscillation -was
observed at the very tail of the bunch train. b) After ion
pumps were turned off, the snake-tail oscillation at the
tail is clear.

(2}
Figure 3. Two series of snapshots taken after He
injection. a) Snapshots for 0.2 nTorr He. and b) for
3.34 nTorr He. The increase of the ion frequency from
Figure 2b is manifest. The beam size blow-up at the
tail is also clearly shown.
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3.34 nTorr showing the same growth pattern. Bunch
sizes are normalized to the initial bunch size.
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Figure 4. Synchrotron radiation profile just before and after
the vertical beam blow-up threshold.
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Fast ion instability

FIl characteristics:

FIl is due to residual gas ionization

Beam bunches’ motion couple the ions’ motion

Fll is a single pass instability like BBU, unlike the classical trapped-ion
instability

FIl can arise in storage rings, linacs, and beam transport line.

It can cause coupled bunch instability, beam size blow-up, emittance growth
and tune shifts etc

Potential cures:

Upgrade the vacuum condition

Increase the ion frequencies spread using an optical lattice, so that the ion
frequencies vary significantly with the time, and no coherent oscillation can
therefore develop

Introduce the gap between the bunch trains in order to clear the ions or make
lons unstable

Bunch by bunch feedback system to realign the trailing bunches



The baseline lattice OCS8
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Parameters and fill patterns

Energy 5 GeV Fill patterns A B C
Circumference 6476.4395 m Bunch spacing, [bucket] 2 2 4
Harmonic number 14042 -
Number of trains, p 117 | 78 58
Betatron tunes 49.23,53.34
Chromaticity -63.7, -63.3 Bunches per even-numbered minitrain, f, | 0 0 23
i -4
Momentum compaction 3.96 < 10 Gaps per even-numbered minitrain, g, 0 0 30
Natural emittance 4.95 4m
Damping time 25 ms Bunches per odd-numbered minitrain, f, | 45 45 22
RF voltage 21.2 MV Gaps per odd-numbered minitrain, g, 30 90 30
Energy loss per turn 8.7 MeV
Momentum acceptance 1.48% DR average current, mA 405 | 405 | 401
Synchrotron tune 0.06 Total number of bunches 5265 | 3510 | 2610
Equilibrium bunch length 9 mm .
— Bunch population [ X 101°] 1.04 | 156 | 2.07
Equilibrium energy spread 0.128%
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Basic beam parameters and fill patterns of ILC damping ring




A fill pattern case

nb=2 f,=4 f,=3
000000000000000000000000

f, bunches in f,bunches in
foxn buckets fixn buckets

g,=2 919
g, buckets g, buckets

24 buckets K,=24 ‘

Distance between kicker pulses |
(pattern of k, buckets repeated p times)

p=1
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lon density
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Bunch index

lon density near the beam for one long bunch train case (dash)
and for fill pattern A in mini-train case (solid) in ILC damping ring OCS8.
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lon density
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lon density near the beam [
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Bunch index

lon density near the beam for one long bunch train case (dash)

and for fill pattern B and C in mini-train case (solid) in ILC damping rings.

Mini-train can reduce the ion density by a factor of 100
compared to one long bunch train case !
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Simulation study of FlII

A weak-strong code Is developed
Electron bunch is a rigid Gaussian beam
lons are regarded as macro-particles

The Interaction of ions and beam particles Is
based on Bassetti-Erskine formula

Beam motion between ionization points can be
linked via linear transfer matrix

Many interaction points are taken into account

14



Simulation study of FlII

AV, +1AV, = =2Nore -2 f (%, Vi)
A §
AY+IAX = ezNif(Xie’yie)
Vo
- r X+1y B X
f(x,y) = \/2(05_05) W[\/Z(af—aj)] exp[ 5

me

6, . O
X +iy —*
(o)

W(z) = exp(—z2)[1 — erf(—iz)]

W,
NI

Kicks between electrons and ions (based on Bassetti-Erskine formula)
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Simulation study of FlII

. Beam motion between ionization points can be linked via linear optics

, %(cosw+alsin V) B siny ,
(Z'Zj a,—a, COSl//—1+ o, Q, siny ﬁ(COSw+a2 sin ) (2'1)
i w/ﬁzﬁl \ 162:31 ﬂZ _
z=(XY)

« For the flat beam, we mainly care about the vertical direction (y direction)
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OCS8 damping ring

One octant of the ring lattice is chosen

Number of elements Is the same as the number of
Interaction points

The Interaction between the beam and ions Is
based on Bassetti-Erskine formula

The linear transfer matrix are used to connect
each interaction point

The beam centroid motion is recorded turn by turn
The feedback is also applied in the code

17



Simulation results
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Beam oscillation
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Beam oscillation
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Mini-train Effect
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Vacuum pressure
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Growth time

200 T T T T T T T T T T

160 |-

120 |-

/

FII growth time [turns]

40 \. -

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gas pressure of CO [nTorr]

FII growth time vs. vacuum pressures of CO for fill pattern A without feedback
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Feedback
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Other gas species
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Conclusion of simulation results

With the introduction of mini-trains the ion density near
the beam can reduce significantly.

For the three typical fill patterns of the ILC damping ring,
the ion density in the mini-train case Is about a factor of
100 less than that of the single long bunch train case.

The simulation results show for three fill patterns A, B
and C, the fast ion instability can not be totally damped
by a fast feedback system with the damping time of 50
turns if the gas pressure of CO is larger than 1nTorr.

Therefore, a better vacuum pressure (< 1nTorr) and a
more advanced feedback system with damping time
shorter than 50 turns are crucial to overcome FlI.

Comparing to one long bunch train case, the mini-train
can reduce the growth of FllI significantly
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Recent experiment on Fll at ATF

Motivation:

To understand FII in low emittance, high intensity and
multi-bunch operation machine

To see in which parameter set can trigger the FlI
To extrapolate Fll in ILC electron damping ring
Experiment setup:

Newly designed gas inlet system in south straight of ATF
DR with additional vacuum gauges (CCGs)

Gas flow controller can elevate local gas pressure up to
two orders of magnitude

Some diagnostics Instruments such as X-ray synchrotron
radiation monitor (XSR), streak camera, turn by turn
BPM and laser wire system...
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ATF damping ring

Gas Injection System

-N2 or others-
Pressure bump 10-7Pa to 10-3Pa

Scaled by
monitored pressure.

RF Cavity

Newly setup gas inlet system in ATF damping ring
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Schematics of gas inlet system
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Gas flow control

Data come from measurement on Dec 10, 2007
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ATF DR parameters

Beam energy [GeV] 1.28
Circumference [m] 138.6
Harmonic number 330
Momentum compaction 2.14E-3
Bunch population [ X 1019] 2.0
Bunch length [mm] 3
Energy spread 0.06%
Horizontal emittance [mrad] | 1.5E-9

Vertical emittance [mrad]
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Since the vertical emittance of DR
IS very large, it is difficult to identify the
fast ion instability this time.

However we indeed observed the
beam profile blowup for multi-bunch
operation and at high vacuum
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Tuning the machine
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Preliminary results (1)

ey =

i

0.3E10_2.92E-5Pa_1bunch_1train (normal operation) 0.39E10 9.15E-4Pa_lbunch_2train
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Preliminary results (2)

11.10E10 9.27E-4Pa 15bunches _1train 11.10E10 9.27E-4Pa_15bunches_2 train (sudden blowup)
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Preliminary results (3)

File STREAK Select Shifter [VUNIT] Synchrescan UNIT [HUNIT] DualTimeBaseExtender UNIT
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Fl2

The bunch oscillation information from streak camera
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Conclusion of the experiment

A sudden beam profile blow up was observed for multi
bunch operation.

If we increase the number of trains, the beam profile
Increases a lot.

Further study of this instability is necessary. In that case,
the machine will have to be tuned to a low emittance
mode (less than 10pm for example).

To optimize the machine to multi bunch mode operation
(Energy Compensation System will be ready). The beam
size and emittance can be measured at that time. In
addition, streak camera, turn by turn BPM can be used
to diagnose the beam in the rng.

The residual gas species will be analyzed via newly-
setup RGAs, then the different ion species effect on FlI
can be investigated.
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Summary

The ion effects in the ILC electron damping ring is extensively studied.

For the current design of the ILC damping rings, the partial pressure of
CO less than 1ntorr is required to mitigate FlI.

The mini-train is proven to be effective both from the theory and
simulation aspects.

Fast feedback system with the damping time shorter than 50 turns is
crucial.

Further experimental study of Fll is necessary to bench-mark the
simulation results against experimental data.

Several publications concerning Fll study: EUROTeV-Reports 2006-003,
2006-004, 2006-047, 2007-012, 2007-013, 2008-004, 2008-005. Nucl. Instr.
and Meth. A 593,183(2008).
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