Overview of the ILC Crab System: The cavity, couplers and wakefields

G. Burt, Cockcroft Institute/ Lancaster University

ILC Crab Cavity Collaboration Team

- Cockcroft Institute:
 - The Cockcroft Institute
 - Graeme Burt (Lancaster University)
 - Richard Carter (Lancaster University)
 - Amos Dexter (Lancaster University)
 - Imran Tahir (Lancaster University)
 - Philippe Goudket (ASTeC)
 - Alex Kalinin (ASTeC)
 - Lili Ma (ASTeC)
 - Peter McIntosh (ASTeC)

- FNAL:
 - Leo Bellantoni

- Mike Church
- Timergali Khabiboulline
- SLAC:
 - Zenghai Li
 - Andrei Seryi
 - Liling Xiao

Crab Cavity Development

0.095° RMS relative phase stability 0.33 % RMS beam energy jitter 2.64 MV rotational field required for 1 TeV CM 2006 ILC Crab Cavity Design Developed: 3.9 GHz superconducting RF cavity 9-cell configuration Independent LOM, SOM and HOM couplers Jul 2007 ILC Crab Cavity Design Model Verified: Modular multi-cell aluminium model designed & built Bead-pull & stretched wire measurements completed MAFIA & MWS simulation results confirmed Sep 2007 Single-cell SRF Cavities Built and Verified: 3 x single-cell cavities fabricated at Niowave Inc. USA Vertical tests showed > 7 MV/m achieved - no quench Low Qo (3e8)

2005 14mR Crab System Specification Developed:

Technology Choice

CKM Cavity design parameters 3.9 GHz 13 cells length = 0.5 m $B_{max} = 80 \text{ mT}$ $E_{max} = 18.6 \text{ MV/m}$ $L_{eff} = 0.5 \text{ m}$ $P_{\perp} = 5 \text{ M V/m}$

Our recommendation to the GDE has been to develop a cavity based on a Fermi-lab design.

To tune the cavity and to avoid spurious mode excitation, the number of cells must be optimised against overall length and new couplers designed.

A 3.9 GHz cavity was favoured it is compact longitudinally and transversely.

ILC Crab Cavity Design

Modal Calculations in MAFIA

Wakefield Verification

- The proposed 9-cell crab cavity has been simulated using MAFIA and Omega 3P:
 - All modes to 18 GHz identified,
 - R/Qs calculated,
 - Mode damping requirements determined from analytical and PLACET wakefield analysis.
- All calculated cavity parameters have been confirmed up to 15 GHz with a cold testing program of bead pull and stretched wire measurements.

Damping Requirements

If the bunch repetition rate is an exact multiple of the unwanted modal frequency the induced wakefield has a phase such that it does not kick the beam. Maximum unwanted kick occurs for a specific frequency offset. This value must be used to determine damping.

For each unwanted mode determine the required external Q factor using

$$Q_{ext}(m) = \frac{\omega_m t_b}{2} \operatorname{cosech}^{-1} \left\{ \frac{4 \Delta y_{ip} E}{q c r_{off} R_{12} \left(\frac{R}{Q}\right)_m} \right\}$$

$$m = \text{mode}$$

$$\omega_m = \text{mode}$$

$$\omega_m = \text{mode}$$

$$q = \text{bunch spacing}$$

$$q = \text{bunch charge}$$

$$r_{off} = \text{max bunch offset}$$

$$E = \text{bunch energy}$$

$$\Delta y_{ip} = \text{max ip offset}$$

$$c = \text{vel, light}$$

G. Burt, R.M. Jones, A. Dexter, "Analysis of Damping Requirements for Dipole Wake-Fields in RF Crab Cavities." IEEE Transactions on Nuclear Science, Vol 54, No 5, pp 1728-1734, October 2007

External Q factors required for couplers

ne Cockcroft Institute

PLACET Simulations

- A 9-cell SRF cavity design developed to achieve ILC specs.
- 35 µm vertical offset at cavity with nominal ILC parameters.

- Percentage change in frequency
- Gives good agreement with analytical results, and shows little emittance growth.

The PLACET results show when the damping specifications are met the maximum vertical offset is 1.5 nm.

Bunch number

Redesign of the HOM coupler

SOM/LOM Coupler Development

Model Verification

- Model fabricated at DL and used to evaluate:
 - Mode frequencies
 - Cavity coupling
 - HOM, LOM and SOM Qe and R/Q

- Modular design allows evaluation of:
 - Up to 13 cells.
 - Including all mode couplers.

LOM measurements

Monopole modes can be measured by directly measuring the frequency shift (or phase) by pulling a metallic circular bead along the cavity axis as the Ez field strongly dominates in this region.

As can be seen we achieved good agreement with simulations for R/Q.

Dipole Bead-pull results

- If we pull a dielectric bead along the axis we can find the transverse E field on axis
- We can then use this to separate the transverse E and B fields perturbing a metal bead.

• Hence we can calculate the R/Q from Panofsky Wenzel theorem.

Wire Measurements Technique

A pulse travelling along a wire has a similar field profile to a relativistic bunch. The wire can move off axis to induce dipole modes.

A wire through a uniform reference tube can be regarded as a transmission line characterised by $R_{\sigma_{,}}$ L_{o} and C_{o}

A wire through the cavity under investigation is modelled with an additional series impedance Z_{ll}/l

Wire Measurements Technique

We use an on-axis measurement as our reference and off-axis measurements as the DUT.

By observing how the coupling impedance varies with offset we can ascertain the mode order.

This technique is a fast method of measuring the impedance over a large bandwidth.

Operating Mode Measurements

The coupling impedance was measured for 3 and 9 cell cavities and was in good agreement with bead-pulls and MAFIA simulations.

R/Q of the 3.9GHz dipole pi-mode

Frequency (GHz)

We investigated how the measurements varied with wire offset. As we can see the R/Q decreases at large offsets due to the wire perturbation.

LOM Coupler Prototype measurements

The external Q of the couplers were measured using the transmission from a calibrated probe of known Qe.

The LOM coupler was found to give good agreement with simulations.

SRF Cavity Tests

•The cavities had a relatively large residual resistance.

•Losses are acceptable for phase control tests but too large for ILC.

•Cavities achieved the required gradient without quench.

