



# by H. Burkhardt, L. Neukermans<sup>1</sup>, A. Latina<sup>2</sup>, I. Ahmed<sup>3</sup>; CERN

# Main deliverable :

The generic Halo and Tail GENeration package was written and made generally available as htgen software package on the <u>web</u> <u>http://cern.ch/hbu/HTGEN.html</u>

HTGEN code repository, with interfaces to tracking codes, installation instructions, examples, and short description it provides simulation and estimates of main halo production processes ; examples applied to ILC & CLIC

Other deliverables : analytic estimates and strategies for tests and benchmarking

- <sup>2</sup> EuroTeV fellow until 30 April 2008, PLACET
- <sup>3</sup> Visitor at CERN, from July 2007

<sup>&</sup>lt;sup>1</sup> EuroTeV fellow until 28 Feb 2007



Motivation



- Halo particles contribute very little to the luminosity but may instead be a major source of background and radiation.
- Even if most of the halo will be stopped by collimators, the secondary muon background may still be significant.
- Studied by analytic estimates and detailed simulations, to accompany the design studies for future linear colliders such that any performance

# Halo sources

#### • Particle processes

Beam Gas elastic scattering, multiple scattering

Beam Gas inelastic scattering, Bremsstrahlung 🖌

**Scattering off thermal photons** - small. analytic estimates + separate MC

**Intrabeam scattering** important at low energies and in particular in the damping ring. currently outside the scope of this study

Synchrotron mismatch upgraded and implemented in GEANT4 V H.B. CLIC-Note-709 EUROTeV-Report-2007-018, 8 June 2007

• Optics related

mismatch coupling dispersion non-linearities

✓ with tracking

• Various noise and vibrations dark currents wakefields spoiler scattering

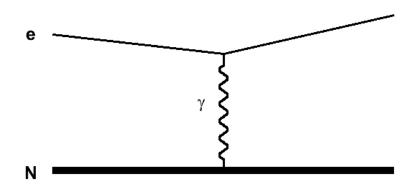






**ILC** parameters based latest (March 2007) BCD

**Beam Gas** estimates for


LINAC section 10 nTorr He at 2K

BDS section 50 nTorr  $N_2$  at room temperature (300 K)



## **Beam gas elastic scattering**





angular distribution divergent for  $\vartheta \to 0$   $\frac{d\sigma}{d\Omega} = \left[\frac{Zr_e}{2\gamma\beta^2}\right]^2 \frac{1-\beta^2\sin^2\frac{\vartheta}{2}}{\sin^4\frac{\vartheta}{2}} \approx 16/\theta^4$ 

only relevant for halo if larger than beam-divergence

$$\theta_{\min} = \sqrt{\epsilon/\beta_y} = \sqrt{\epsilon_N/\gamma\beta_y}$$



Beam gas elastic scattering

 $\sigma_{\rm el} = \frac{4\pi \, Z^2 \, r_e^2}{\gamma^2 \, \theta_-^2} \, .$ 

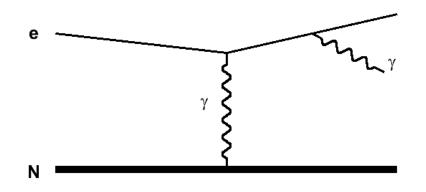
 $\epsilon_N = \gamma \epsilon$ 



total cross section

at constant normalized emittance

scaling as  $1/\gamma$  or 1/energybeginning of LINAC important  $\sigma_{\text{el}} = \frac{4\pi Z^2 r_e^2 \beta_y}{\epsilon_N \gamma}$ 


| ILC estimate. |     | <b>P</b> = probability / m for scattering > 1 $\sigma$ divergence |                     |                  |                      |
|---------------|-----|-------------------------------------------------------------------|---------------------|------------------|----------------------|
| Location      | E   | Gas                                                               | ho                  | $\sigma_{ m el}$ | P                    |
|               | GeV |                                                                   | $m^{-3}$            | Barn             | $m^{-1}$             |
| LINAC         | 5   | He                                                                | $4.8\times10^{16}$  | $2.0 	imes 10^6$ | $9.9 \times 10^{-6}$ |
| LINAC         | 250 | He                                                                | $4.8\times10^{16}$  | $3.8 	imes 10^4$ | $1.8 \times 10^{-7}$ |
| BDS           | 250 | $N_2$                                                             | $1.6 	imes 10^{15}$ | $4.6 	imes 10^5$ | $1.5 \times 10^{-7}$ |

Probability 50x higher beginning of LINAC at 5 GeV compared to end at 250 GeV Probability end of LINAC and BDS similar Integrated over LINAC + BDS : Prob. =  $9 \times 10^{-3}$  to scatter > beam divergence Probability for >  $30\sigma$  (loss) ; integrated over LINAC =  $10^{-5}$  over BDS =  $5 \times 10^{-7}$ 



### **Inelastic scattering**





**scattering angle** (of  $\gamma$  with respect to incident e)

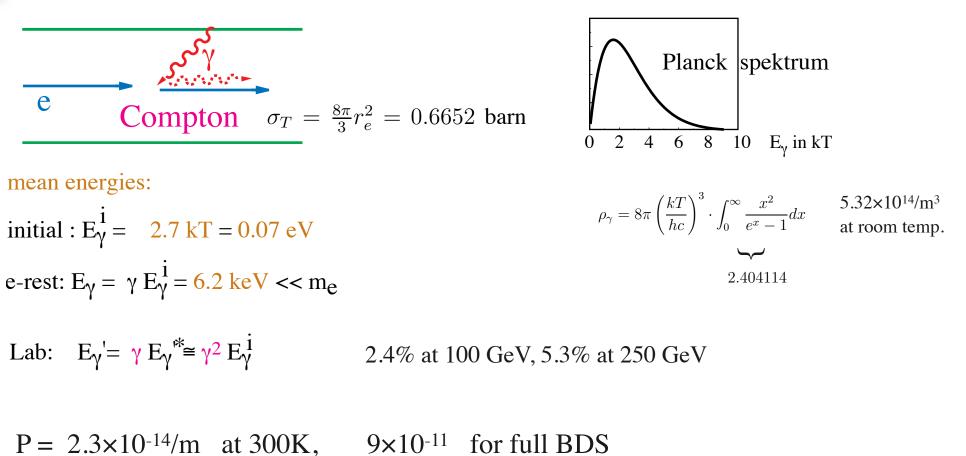
$$f(\theta)d\theta \propto rac{\theta \ d heta}{( heta^2+\gamma^{-2})^2} \; .$$

energy fraction k going to photon

$$\frac{d\sigma}{dk} = \frac{A}{N_A X_0} \frac{1}{k} \left(\frac{4}{3} - \frac{4}{3}k + k^2\right)$$

integrated for k > 1%, no E dependence  $\sigma_{in} = \sigma = 0.375$  Barn for He,  $\sigma = 6.510$  Barn for N<sub>2</sub>

$$\sigma_{\rm in} = \frac{A}{N_A X_0} \left( -\frac{4}{3} \log k_{\rm min} - \frac{5}{6} + \frac{4}{3} k_{\rm min} - \frac{k_{\rm min}^2}{2} \right)$$


**Probability:**  $1.8 \times 10^{-12}$ /m in LINAC,  $1.8 \times 10^{-12}$ /m in BDS ; quite similar and small summing up over both LINAC and BDS :  $P = 2.3 \times 10^{-8}$ /m

fully included in current HTGEN, minor contribution for ILC



# **Scattering off thermal photons**





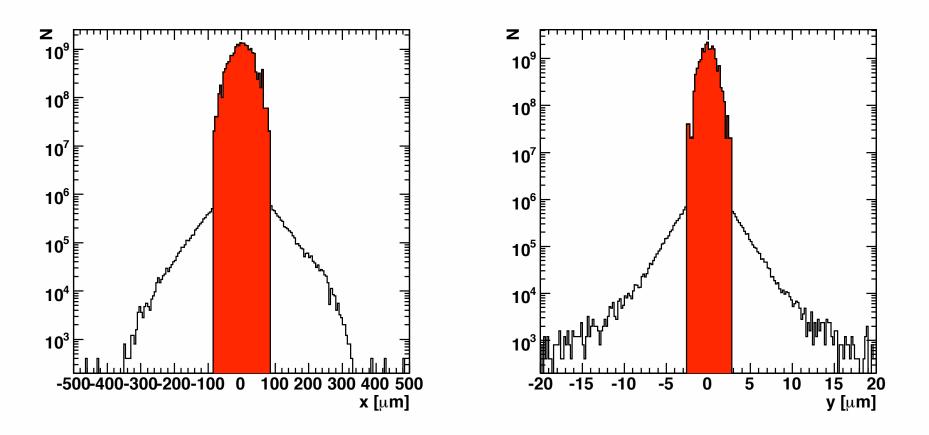
Was important for beam halo in LEP and the dominant single beam lifetime. Practically negligible for the ILC.





- HTGEN runs standalone or interfaced to detailed tracking programs
- interfaces to PLACET and MERLIN are available from our website

allows to study


- tails enhancement / production / folding related to optics mismatch, coupling, dispersion, non-linearities
- synchrotron radiation, included in tracking programs
- detailed loss maps and distributions
- follow up of secondary particles

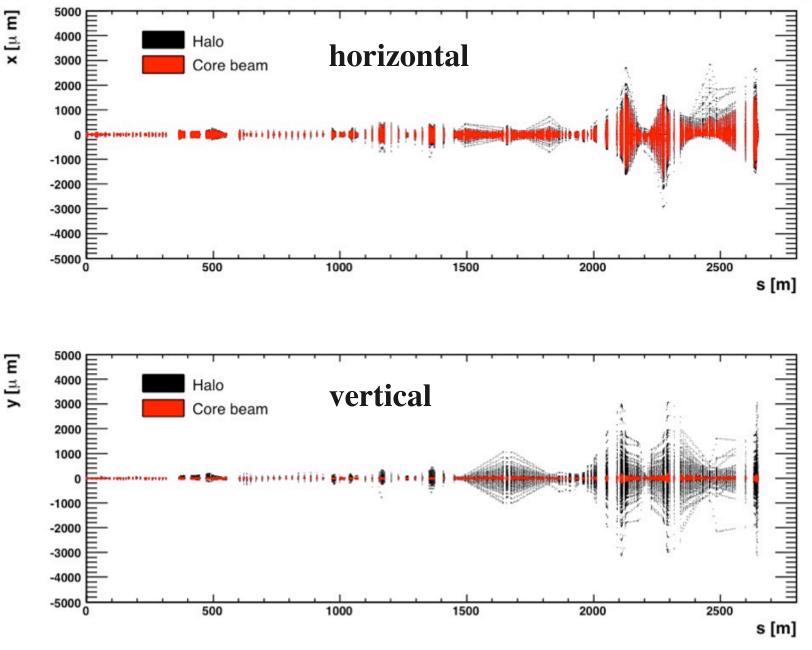




## horizontal

vertical




Transverse beam profiles at the BDS entrance

3×10<sup>-5</sup> above 10σ



## **Detailed tracking example, ILC BDS**





LINAC + BDS : fraction of 10<sup>-4</sup> of beam particles hit spoilers in ideal machine - no misalignment / errors





2×10<sup>10</sup> e/bunch 2820 bunches

#### 5.64×10<sup>13</sup> e/train

× 10<sup>-4</sup> fraction hitting spoilers, HTGEN + tracking, LINAC + BDS

5.6×10<sup>9</sup> e/train on spoilers

- ~  $2 \times 10^{-5}$  fraction resulting in secondary muons
- ~ 10<sup>5</sup> muons / train end of BDS

to be verified by detailed tracking of lattice + collimation (with errors) and combined simulation, HTGEN + BDSIM





reference to all material, software package for download, installation instructions, answers to frequently asked questions: HTGEN page <u>http://hbu.home.cern.ch/hbu/HTGEN.html</u>

#### Reports

Monte Carlo generation of the energy spectrum of synchrotron radiation, by. H. Burkhardt, 8 June 2007, <u>CERN-OPEN-2007-018</u>; CLIC-Note-709; <u>EUROTEV-Report-2007-018</u>

Halo Estimates and Simulations for Linear Colliders, <u>PAC'07 Proc. WEOCC03</u>; <u>CLIC-Note-714</u>, CERN-AB-2007-045, <u>EUROTeV-Report-2007-064</u>

#### Presentations

LC workshop Daresbury : 8-11 Jan 2007, <u>Halo and Tail Generation Studies</u>, by L Neukermans

PAC June 2007 : Halo Estimates and Simulations for Linear Colliders, by H.Burkhardt

CLIC'07 workshop : <u>Halo and Tail Generation</u>, by H.Burkhardt on 17 Oct. 2007





- improve HTGEN interface, eliminate external libary (CLHEP dependence) ✔
- collaboration with Forschungszentrum Karlsruhe student starting 9/2008 using HTGEN + analytic estimates
- Summarize combined results in a Comprehensive Report
- Provide an online manual for the HTGEN software package (with help of I.Ahmed)

HTGEN - good basis exists, was and is used

Still a lot of potential for further work with application to detailed designs and benchmarking



Summary



- we provide a generic package HTGEN with interfaces for PLACET and MERLIN, ready to be used
- sample jobs and estimates are provided both for CLIC and the ILC and documented (<u>EUROTeV-Report-2006-028</u>, <u>EUROTeV-Report-2007-064</u>)
- used as basis for the CLIC vacuum specification (CLIC Technical Committee -Meeting on 17/06/2008 )
- the most important particle scattering process in the LINAC+BDS is the elastic beam gas scattering; good vacuum important, particularly at beginning of the LINAC; from tracking with errors : fraction of about 10<sup>-4</sup> of beam particles hit spoilers for ILC





# HTGEN, BDSIM and GEANT4

**HTGEN** and **BDSIM / GEANT4** are at present mostly complementory

**BDSIM/GEANT4** allow for simulations of many processes ; they are well adapted to simulate cascades and multiple scattering in dense materials

**HTGEN** is well adapted to simulate relatively rare single scattering processes

combine HTGEN and BDSIM ?