Fabry-Perot cavity in pulsed regime & Polarimetry

Polarimetry related workOptical cavity related work

Upsala, Zomer

Polarimeter related work

- Detailed laser beam polarisation measurement and control with HERA cavity polarimeter
 - Document written by M. Jacquet → Eurotev Note
 - Work inspired by SLAC SLD polarimeter studies and CEBAF polarimeter cavity studies
 - Use of an uncoated quartz plate to measure the laser beam polarisation
 - Reduction of systematics related to anti reflection coating
 - Checks of fitting procedure
 - Detailed systematics
 - On the models, e.g.:
 - effect of the optical activity in quartz plates
 - misalignments and study of parasitic birefringences
 - Use of optical theorems to model the optical beam line transport
 - On the measurements → photodiode readout noise studies at HERA
- Result: systematics on the «degree of circular polarisation»≈0.5%
 - Dominated by the noise in photodiode readout → reducible to the 0.1% level

Laser source related work

- Fabry-Perot in pulsed regime cavity was envisaged for an ILC polarimeter
 - But new amplification techniques have appeared
 - See laser wire project which could fit for the polarimeter laser of *LC-DET-2001-047*

Table 1: Required laser parameters	
Parameter	Value
Repetition rate	6.49MHz
Pulse energy	50 - 100µJ
Pulse duration	~ lps
Beam quality	$M^2 < 1.1$
Wavelength	~ 500mm
soud 1036 nm, 200 ps λ/2 Vb d clad dichroic mirror aspheric	aspheric dichroic pump

0 - 12.99

- Meanwhile Fabry-Perot cavity in pulsed regime then appears
 - In the Compton e+ polarised sources for CLIC and ILC
 - For the gamma-gamma ILC option
 - In compact Compton monochromatic X-ray sources, with applications in the following fields :
 - Radiotherapy,
 - radiography, coronary angiography
 - nuclear waste management (Japanese project),
 - museum (*Le Louvre* project)

Status of the Fabry-Perot R&D

- Locking of laser to cavity
 - Numerical feedback achieved
 - Power Gain 1200 achieved in 2007
 - Power Gain 10000 currently under study
 - 2 publications to come (PRL?, Rev. Sci. Instr)
- Cavity geometry studies
 - 4 mirrors nonplanar design studies to decrease the laser beam waist while keeping power and circular polarisation stabilities: achieved
 - 1 publication in Appl. Opt.
 - 2 publications to come (Opt. Lett., Phys. Rev. E)
 - 1 Phd (octobre 2008)

Status : Cavity locked (*low gain* ~1200) •Digital feedback (VHDL programming) set up •Already $\Delta f_{rep}/f_{rep} \sim 10^{-10} \Rightarrow \Delta f_{rep} \sim 76$ mHz for $f_{rep} \sim 76$ MHz •New mirrors in june 2008 \Rightarrow gains 10⁴

Locking with gain 10⁴ expected end 2008

Cavity locked With gain 1200

Transmission Front-end Pound-Drever-Hall Front-ends

Transmission Front-end (prototype)

Pound-Drever-Hall Front-ends (prototype)

We are implementing digital mixer

Digital Feedback System

LYRTECH DFS :

- 8 ADC channels
- Sampling @ 105 MS/s
- 14 bits resolution
- Virtex-II FPGA : XC2V8000
- Fixed point arithmetic
- 168 Multipliers 18b x 18b
- 8 DAC channels
- Conversion rate @ 125 MS/s
- 14 bits resolution

LYRTECH DAQ

C++ GUI

Feedback System Issues

- Complexity: (10k C++ + 5k VHDL) code lines
- Xilinx firmware : long compilation time > 1h
- Locking Feedback: 3 Integrators + Adaptive Feedback Multiple In/Out Different Dynamic Ranges
- Fixed point computation : complex filter synthesis and implementation to achieve required precision

Second-Order-Section implementation with 18 bits Multipliers

Data path to increase loop computing precision to 36 bits

Small laser spot size

Small laser spot size &2 mirrors cavity → unstable resonator (concentric resonator)

4 mirror cavity for KEK

4 mirror cavity for KEK

Mirror positioning system

Specific design studies

Specific design studies

Protoype and vacuum tests of all elements undergoing

Vacuum vessel for KEK

Continuation of the R&D will start 2009 thanks to French ANR fresh funding

1. Setup the following system at Bordeaux/Orsay

2. Installation of the system at ATF/KEK, Collaboration with ATF group

Summary

- Work on the HERA polarimeter to study systematics related to the determination of the degree of circular polarisation of the laser beam – Report written by M. Jacquet
- Cavity locked in pulsed regime with gain 1200
 - Locking with cavity gain 10000 expected end 2008
 - Technically difficult & we have been delayed by asbestos pb (→building new clean optical room during winter 2007-2008...)
- Cavity geometry design studies to reduce the laser beam waist achieved
 - Prototype and tests under construction/realization
- This R&D will go on at KEK/ATF