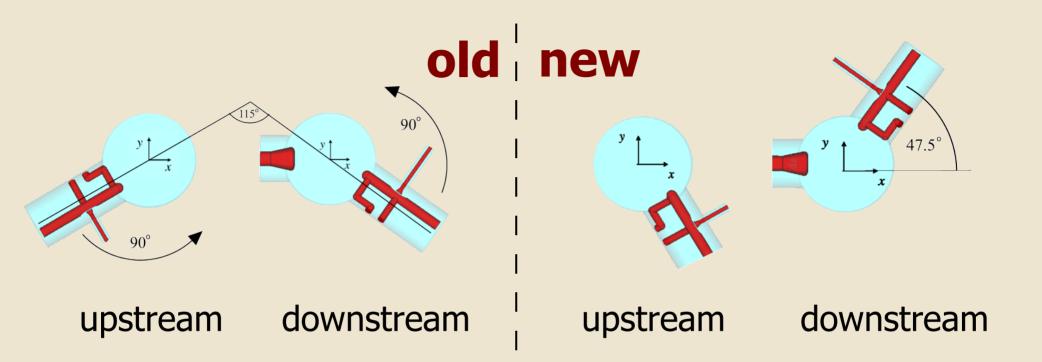


Coupler Wakefield and RF Kick Simulations


Dirk Krücker - DESY Uppsala, August 2008

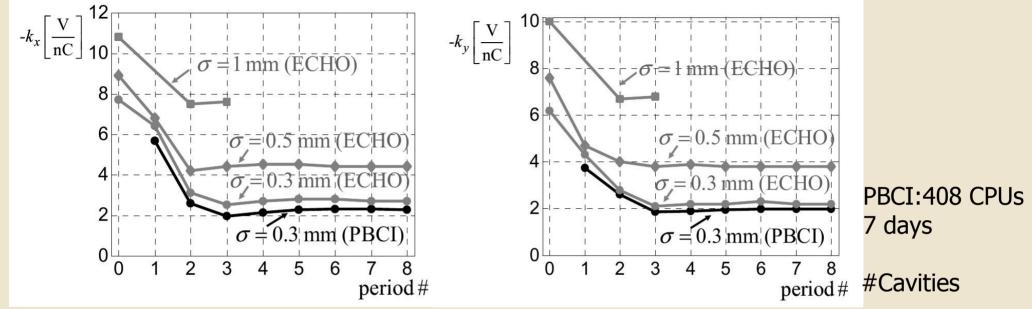
- There are 3 couplers
 - 1 RF or power coupler
 - 2 HOM couplers
- Couplers destroy the rotational symmetry and introduce transverse field components
 - RF fields
 - Wakefields

TESLA cavity

Reminder on Cavity Couplers

- A design change had been considered* to reduce the influence of coupler wakefields
 - Rotate HOM couplers relative to RF coupler to minimise the sum of transverse wakefields

Coupler Wakefields – MERLIN Implementation


- Calculation by I.Z. gives transverse kick not the wake potential
- We assume a purely capacitive wakefield (worst case)
 - A particle in a bunch with distribution $\lambda(s)$ experiences a transverse potential: $W(s) = 2k \int_{0}^{0} \lambda(s) ds$
 - In MERLIN numerically calculated

$$\boldsymbol{k}_{old}(x, y) = \begin{bmatrix} -21\\ -19 \end{bmatrix} + \begin{bmatrix} 4300 & 70\\ 30 & -900 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

significantly smaller on axis
$$\boldsymbol{k}_{new}(x, y) = \begin{bmatrix} 2.5\\ -0.2 \end{bmatrix} + \begin{bmatrix} 2330 & 40\\ -20 & 1100 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

I. Zagorodnov and M. Dohlus,
LCWS/ILC, Hamburg 2007

$$\boldsymbol{k}_{\textit{rescaled}}(x, y) = 0.11 \cdot \boldsymbol{k}_{\textit{old}}(x, y); \quad x, y[m]; \quad k[V/nC]$$

Technical implementation: talk on MERLIN status this meeting w=2k

Coupler Wakefields – Steady state solution

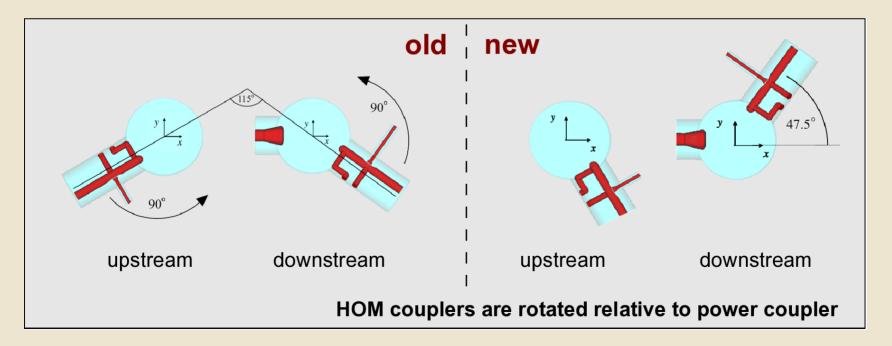
M. Dohlus, I. Zagorodnov, DESY; E. Gjonaj, T. Weiland, TEMF, TU-Darmstadt; EPAC08, MOPP013

Self Induced Coupler Kick (Wake)

It can be seen that the kick factor at both coordinate plans for $\sigma = 0.3$ mm is about 2 V/nC, that is an order of magnitude lower than a preliminary estimation of Ref. [5]. This is a consequence of a shadowing effect of the cavity and of a linear decrease of the steady-state wake with the decrease of the bunch length [6, 9].

Coupler RF kick – MERLIN Implementation

- RF kick is given as a complex ratio wrt the accelerating voltage
- The kick is given by for example


$$\mathbf{v} = (\mathbf{v}_{x}, \mathbf{v}_{y}) := 10^{\circ} \cdot \mathbf{V} / \mathbf{V}_{\parallel} \qquad x, y \text{ [cm]}$$
$$\mathbf{v}_{add} (x, y) = \begin{bmatrix} -82 + 58i \\ -9.2 + 1.8i \end{bmatrix} + \begin{bmatrix} -29 - 27i & 63 + 5.1i \\ 63 + 7.0i & 28 + 24i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\boldsymbol{v}_{new}(x, y) = \begin{bmatrix} -82+58i \\ -74-8.7i \end{bmatrix} + \begin{bmatrix} -29-27i & 63+5.1i \\ 4.9+2.9i & -48-12i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

MAFIA calculation by M.Dohlus

$$\Delta \mathbf{y'} = \frac{\Delta E}{E} |\mathbf{v}_{y}| \Re \{ \mathbf{e}^{i(\phi_{c} - \varphi - k\Delta \mathbf{z})} \}, \quad \mathbf{v}_{y} = |\mathbf{v}_{y}| \mathbf{e}^{i\phi_{c}}$$

 $\Delta z = -\Delta ct$, longitudinal position for a particle at φ $\varphi = 5.3^{\circ}$ RF phase, $k = 2\pi f/c$, L = 1.036 m $\Delta E = 31.5$ GeV/m·L, $E = 15 \cdots 250$ GeV

- There is no MAFIA field calculation for the modified design. Approximated in MERLIN by $v_y \rightarrow -v_y$ (downstream coupler)
- In this case the angle between HOM coupler and x-axis is only 42.5° instead of 47.5°.

- There are different numerical calculations / different codes for electromagnetic field calculations
 - Omega3P, MAFIA, HFSS
- The numerical result is sensitive
 - cancelation between upstream and downstream coupler
 - the transverse fields are a small effect, about 5 orders of magnitude smaller than the longitudinal fields
 - varies depending on assumptions about
 - input coupler pen depth $\sim Q$
 - beam loading etc.

Coupler RF kick – Differences between Codes

$ V_{y }$ on axis for 31.5 GeV	Code and Q _{ext}	
old 284 V new 2350 V	MAFIA - 2.5 · 10 ⁶	used for MERLIN simulations
TDR(=old) 785 V TDRM* 2621 V	Omega3P - 3.4 · 10 ⁶	Zenghai Li's talk, Wakefest 07
TDR 130 V	Omega3P - 3.5 · 10 ⁶	Bane et al., EPAC08, TUPP019

*TDRM = downstream coupler rotated by 180°

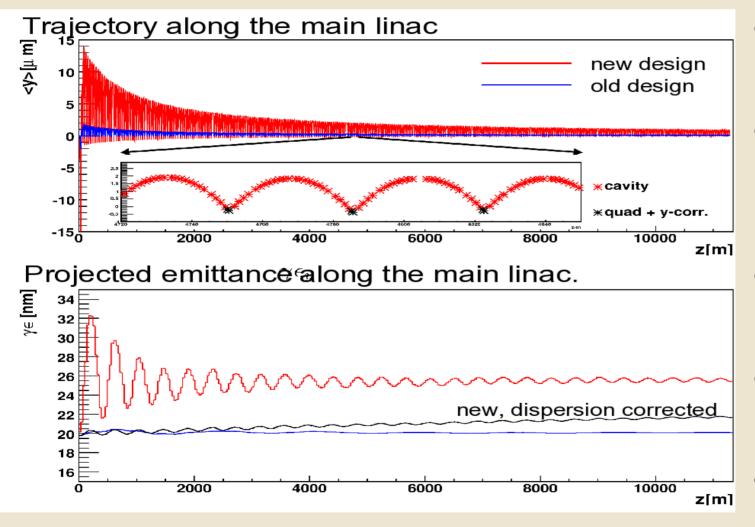
For comparison a 100 μ rad cavity tilt

$$V_{y} = \frac{1}{2} \alpha V_{\parallel} = 1600 V$$

but RF kick is not random

Table 2: RF kick on-axis due to coupler asymmetry in [kV]. $\operatorname{Re}(V)$ is the in-phase, $\operatorname{Im}(V)$ the out-of-phase kick.

Region	\mathbf{V}_{x}	\mathbf{V}_y	
Upstream	-1.82 + 0.22i	-1.29 - 0.11i	
Downstream	-0.79 - 1.62i	+1.15 + 0.28i	
Total	-2.61 - 1.40i	-0.13 + 0.17i	


cancelation between upstream and downstream coupler 9

Different Merlin implementations according to the changing numerical input

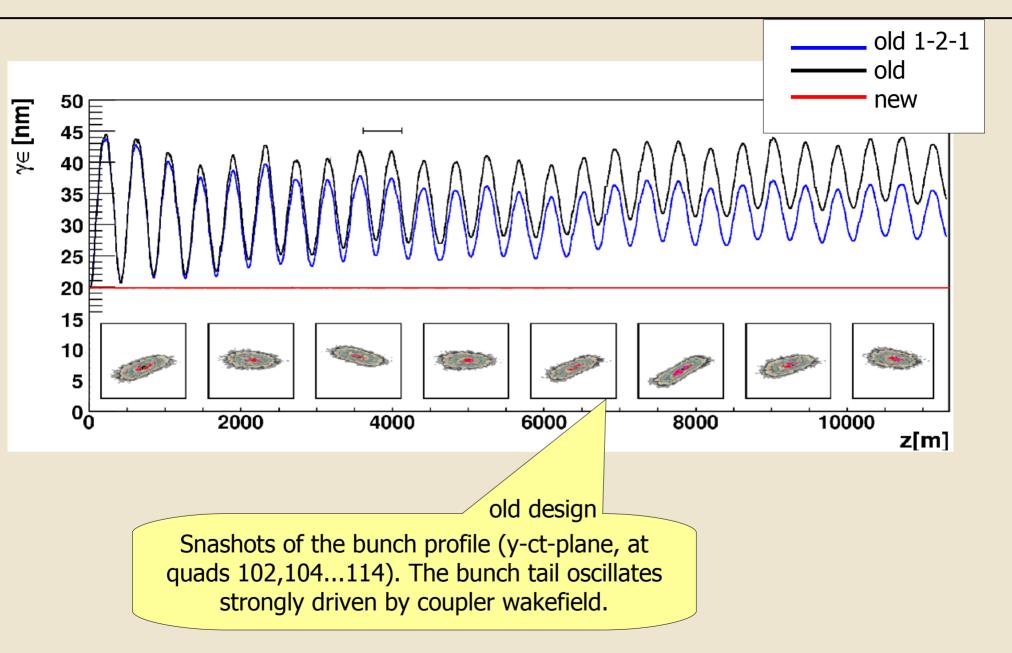
- My talk at SLAC, Wakefest 07 based on
 - I. Zagorodnov and M. Dohlus, LCWS/ILC Hamburg 2007, paper (sign errors in RF kicks!)
 - Reduced wakefield and (wrong!) RF kicks in new design
- Our paper at Genoa, EPAC08, TUPP047 (corrected) = EUROTeV-Report-2008-003
 - The RF kick is larger in the new design
- This meeting: steady state solution for coupler wakefields about 1/10!

Simulation Results - RF Kicks

D. Krücker et al., EPAC08, TUPP047, EUROTeV-Report-2008-003

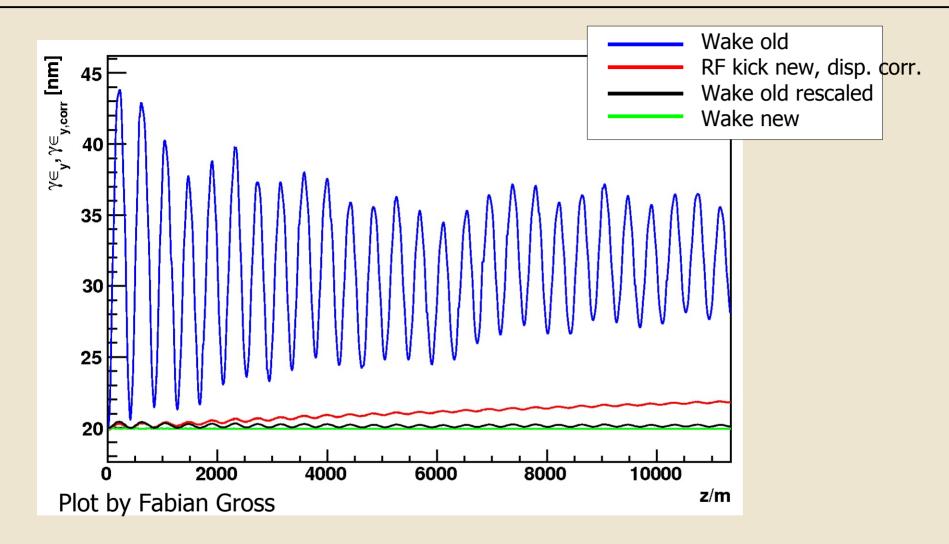
- Perfect linac
- 20 nm initial emittance
 - 1-2-1 steering
 to compensate
 kicks
- old design negligible
- new design $\gamma \epsilon_y = 25.1 \,\mathrm{nm}$
- dispersion corrected $\gamma \epsilon_y^c = 21.8 \text{ mm}_{11}$

Does the RF kick increased the sensitivity to Voltage instabilities?*


Random Klystron errors (24 cavities) applied to the steered system

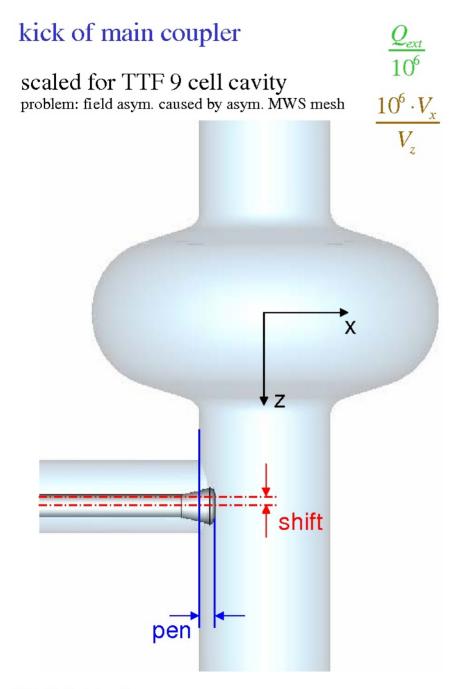
$\gamma \epsilon_y (\gamma \epsilon_y^c) [nm]$	0%	0.1%*	1%
old design	20.3 (20.3)	20.3 (20.3)	20.4 (20.3)
new design	25.1 (21.8)	25.1 (21.8)	28.3 (22.1)

*RDR value


 New design is more sensitive to voltage errors but still acceptable

Simulation Results -Wake Kicks (old Results)

DK et al., EPAC08 - TUPP047


Simulation Results – Wake Kicks, Steady State Results

A large RF kick is more problematic than the coupler wakefield kick

Conclusions

- Collecting the appropriate numerical input for simulating RF and wakefield kicks turned out to be chasing a moving target
 - It seems to converge now
- In the steady state solution the coupler wakefields are no problem anymore
- Modifying the coupler design strongly increases the RF kicks
 - This effect looks worse than the steady state coupler wakefield!

MWS-discretization: 30lines@2GHz			
shift/mm pen/mm	-5	0	5
4.5	3.347 19.9+j35.9	4.490	
6	2.466 47.6+j40.9	3.384 30.6+j54.3	
7.5	1.781 84.5+j50.0	2.4482 58.7+j65.0	3.987 37.4+j68.1
9	1.272 130.3+j56.§	1.940 93.4+j83.3	3.464 65.1+j88.9
10.5	0.9662	1.663	2.583 100.9+j86.5
12		1.351	2.099 141.1+j65.0

MWS-discretization: 50lines@2GHz

shift/mm pen/mm	-5	0	5
4.5	3.405		
6	2.488	3.423	
7.5	1.857 83.7+j14.2	2.623 59.1+j31.7	4.242 37.1+j35.5
9		2.008	3.237
10.5		1.570	2.542
12			

old values!

DESY M. Dohlus Sep 2003