
Status of Merlin

 Dirk Krücker - DESY
Uppsala, August 2008

A C++ Class Library
for performing

Charged Particle Accelerator Simulations

2

Intro

● MERLIN had been used for many EUROTeV studies.
● New code of general interest has been developed that it

worth to become part of the MERLIN library. Other pieces
of code are not finalised.

– DFS
– Component errors etc.
– Framework for a Start-to-end Simulation
– ROOT
– Wakefields

● New version management at DESY:
CVS to Subversion

3

New Code – Dispersion Free Steering

● DFS algorithm allows for different energy adjustment
policies

– Constant gradient
– Initial beam energy
– Klystron shunting

● Had been used in many
studies

● EUROTeV-Report-2006-106
● Available from the webpage

but depends on development version of MERLIN

4

New Code – Smaller Contributions

● General classes to simplify the application of component errors
EUROTeV-Report-2007-020 (Evaluation of the Component
Tolerances ...)

– Quadrupole alignment errors, klystron voltage errors etc..
AddTransverseErrors(20*micrometer, 20*micrometer, bline,"BPM.*");

● SMPBunch to ParticleBunch converter*

● More ideas around, but not yet in a state to enter the next release

– Magnetic field errors

– Seryi model of ground motion

– Kubo et al., survey line model

– ...

● An interface to read arbitrary alignment data (see talk by F.Poirier)

*SMP(Sliced Macro Particles) bunch - transverse phase space by 1st and 2nd order moments
 Particle bunch – full 6D phase space

5

1. Luminosity Stability

ELIN1
(SMP)

EUND
(Particle)

ELIN2
(SMP) EBDSFB FB

One-to-one steering xy (433 BPMs)
One-to-one steering xy

(86 BPMs)

“fast feedback”
centroids and slopes

fixed to nominal

“fast feedback”
centroids of

colliding bunches

● x = 10 μm
● y = 0.02 μm
● ATL in x and y
 A = 4·10-18 m/s
● 1-2-1 steering
● Idealistic feedback

 and beam tuning
● 5 linear tuning knobs
 wx, wy, dx, dy, cxy
● Cross section from
 GUNIEAPIG with
 40 collision / point

1d 1m 1y

In our model the luminosity
can be kept above 80% of
the nominal values for about
15 (-7+15) days. Luminosity
needs to be re-established
then by a re-application of
beam-based alignment.

ATL ground motion

The Model

EUROTeV-Report-2007-019

6

Unfinished new Code - Subsystems Template Class

Accelerator

void Track()
void Steer()
...

vector< SubSystem* > eSubs
vector< SubSystem* > pSubs
vector< SteerAlgo* > eSteer
vector< SteerAlgo* > pSteer
...

loop:
e-Sub. & p-Sub.

loop:
steering algorithms

common reference system
for ground motion

virtual void BunchHandler (Bunch*& b)
virtual void Track (Bunch *b=currentBunch)
virtual void Init (pair< AcceleratorModel *, BeamData * > mb)

virtual T * CreateBunch (BeamData *bd=0)
virtual void CreateTracker (AcceleratorModel::Beamline *bl=0)

protected:
void CreateBunch (ParticleBunch *&pb, BeamData *bd)
void CreateBunch (SMPBunch *&sb, BeamData *bd)
...

TTrackSim< TBunchCMPTracker<T > >* theTracker
T* currentBunch
SMPBunchConstructor * SBC
ParticleBunchConstructor * PBC
...

SubSystem

TypedSubSystem
< T >

SMPBunch / ParticleBunch

7

Unfinished Code

● Start to End Simulation – General Framework
– EUROTeV-Report-2007-019
– Template class for a multi system simulation

● Working
– New Parser for an easier adaption to changes in

lattice files (naming conventions etc.)
● Turned out to be the the difficult part
● Postponed for AML integration

– ROOT interface separated

8

New Code - ROOT

● Common task for any study

– Write out beam parameters at component xyz

– Save bunch particles or lost particles
● ROOT is a widely used tool for analysis

– Interactive data analysis, visualisation
● A simple interface derived from SimulationOutput

– Modification in SimulationOutput for output at position z
(MERLIN uses string pattern to identify accelerator components.
 - Names are not always unique.)

● As a MERLIN example i.e. not as part of the library

– Merlin lib should not depend on ROOT libraries

SimulationOutput

TrackingOutputROOT

9

ROOT Trees

● Tracking Tree ● Bunch Tree
 SMPBunch and ParticleBunch

x y x ' y '
ct dp /p0 Q

zcomponent p0

〈x 〉 〈y 〉 〈 x ' 〉 〈y ' 〉
〈ct 〉 〈dp/ p0〉

 x  y dp /p0

x /y x /y Dx /y D' x /y
x /y x /y

c BPM YCor V cavity etc.

● Both trees are filled at arbitrary positions given by
● name pattern = accelerator component or z position

● Automatic ROOT file creation
● Multiple trees
● Successfully tested: Isabell, Fabian* as guinea pigs :)
● Productivity booster for everybody who knows a bit of ROOT

- Think about physics not code
*Summerstudent at DESY

10

New Code - Wakefields

● MERLIN was written mainly for cavity wakefields but already
designed flexible enough to accommodate other wakefields

● Roger Barlow and Adriana Bungau extended the scheme to
include higher order short range wakefield
EUROTeV-2006-051

● My own work on coupler wakefields needs similar
modifications to MERLIN
EUROTeV-2008-003 and talk this meeting

● A general scheme for arbitrary wakefield types in one
simulation without interference

11

WakeFielProcess and WakeFieldPotential in MERLIN

WakeFieldProcess AcceleratorComponent

TeslaWakePotentials

virtual double Wtrans(double z) = 0
virtual double Wlong (double z) = 0

WakePotentials

double Wtrans(double z){...}
double Wlong (double z){...}

ILCDFS & ILCML
examples
ILC specific →
example, not in library

library

examples

● In Merlin WakeFieldPotentials is used as interface
● TeslaWakePotentials implements Wlong Wtrans

▬ Cavity/ILC specific
● WakeFieldProcess does not know anything about the
 derived type (TeslaWakePotentials)
● For the new code we have different classes derived
 from WakeFielProcesses and WakeFieldPotential

accelerator modeltracking
 WakePotentials* currentWake = GetWakePotentials()

12

Derived XYZWakeFieldProcess and XYZWakePotential

WakeFieldProcess

SpoilerWakeFieldProcess SpoilerWakeFieldPotentials

virtual double Wtrans(double z){return 0;}
virtual double Wlong (double z){return 0;}
void GetExpectedProcess(WakeFieldProcess*);

WakePotentials

virtual double Wtrans(double s, int m) = 0
virtual double Wlong (double s, int m) = 0

TaperedCollimatorPotentials

double Wtrans(double s, int m) {...}
double Wlong (double s, int m) {...}

inherits
functionality

to allow type check

spoiler_wake = static_cast<SpoilerWakePotentials*>(currentWake);

Asks accelerator
component for

wakefield and ask the
wakfield if itself is
the right process

New classes
from Roger and

Adriana

typeid(*(wake->GetExpectedProcess()))==typeid(*this))

13

General WakeFielProcesses

● Backward compatible
● Allows to derive different classes from
WakeFieldProcess

– SpoilerWakeFieldProcess
– CouplerWakeFieldProcess

 and to have multiple WakePotentials in one
simulation

● Presently in a separate CVS branch
– will be merged for the new release

14

SVN

● At DESY the CVS to SVN migration has started
● A Very Short Introduction to Subversion (SVN):

– Similar to CVS
● svn checkout (get a local copy)
● svn update (keep it up-to-date)
● svn commit, add, move, delete etc.

– But a different system: a database, different concept of
tagging:

 svn copy https://svnsrv.desy.de/svn/merlin/trunk \

 https://svnsrv.desy.de/svn/merlin/tags/version_3.20 \

 -m “tagging the 3.20 release of merlin”

https://svnsrv.desy.de/svn/merlin/trunk
https://svnsrv.desy.de/svn/merlin/tags/version_3.20

15

SVN

● Runs on Linux and Windows

– There is a Windows GUI: TortoiseSVN
● Biggest disadvantage: Authentication

– As a developer you will need a
● SSL certificate (aka GRID certificate) or a
● DESY account

– Browser and download is open for everybody
● http://svnsrv.desy.de/public/merlin public
● https://svnsrv.desy.de/svn/merlin SSL
● https://svnsrv.desy.de/desy/merlin DESY kerberos
● No decision yet concerning MERLIN

16

New MERLIN Release

● The development version contains about 25
modified files compared to the last release
(version 3.1)

● There is the wakefield branch
● ROOT and other new code
● The DFS example needs the development version

17

Updated Web Page

● Updated documentation
● New examples
● Short subversion introduction
● source code documentation

and class Browser

18

19

20

Conclusions

● Migration to Subversion has started at DESY
– CVS has been copied to SVN
– No decision yet concerning MERLIN

● New release soon
– ROOT
– Wakefields
– etc.
– Doxygen code documentation

