<u>FLUM</u>

Beam Parameters Determination and Fast Feedback Using Beamstrahlung Photons and Pairs (EUROTEV report summary)

Ch.Grah, W. Lohmann, A.Sapronov

- The Devices: BeamCal and GamCal
- geometry and purposes
- Beam Diagnostics Using Beamstrahlung
- Fast luminosity estimate
- beam parameters, observables and method
- Single Parameter Mode
- Reconstruction capabilities
- Pad grouping and sensitive layers selection
- Multi-parameter Mode
- Set of beam parameters allowing stable reconstruction
- Correlation between beam parameters
- FE Electronics Prototyping
- Summary

Part of FCAL:

Contributions from A. Abuslemen (Stanford), B. Morse (BNL), A. Stahl (Aacheen) and M. Zeller (Yale).

BeamCal and GamCal geometry (14 mrad crossing angle)

BeamCal:

~3.5m from IP 30 tungsten-diamond(GaAs,Si) layers R_{in} = 20mm, R_{out} = 165mm 5-45 mrad aperture (beamstr pairs) 8x8 mm² pads

GamCal: (early design stage):

- ~ 180m from IP
- < 5 mrad aperture (beamstr photons)

Beamstrahlung Spectrometer

BeamCal:

- shielding
 - inner detector from backscattered particles QD0 magnet from beamstrahlung pairs
- physics
 - detector hermeticity, vetoing highly energetic electrons at lowest angles
- fast luminosity monitoring
 - + beam diagnostics using energy depositions of beamstrahlung pairs

GamCal:

- fast luminosity monitoring, extended to lower beam currents determination of the beamstrahlung photons intensity and energy
- improve beam diagnostics

beamstrahlung and pairs

 $\begin{array}{l} \mbox{Pinch effect - creation of beamstrahlung} \\ N_{phot} \sim O(1) \mbox{ per bunch particle} \\ \delta_{BS} \sim O(1\%) \mbox{ energy loss } (\sim 10^8 \mbox{ TeV}) \end{array}$

A fraction of the photons creates e^+e^- pairs, (~10² TeV)

Pair depositions on BeamCal: 15k e⁺e⁻ per BX; 10-20TeV energy

The amount and spectrum of the beamstrahlung photons and of e⁺e⁻ pairs strongly depends on beam parameters. e.g. from the depositions on BeamCal A bunch-by-bunch luminosity estimate and beam parameter determination is feasible

Fast luminosity estimate

Comparing the total energies on BeamCal and GamCal a bunch-by-bunch luminosity estimate is available, e.g. offset in y:

beam diagnostics: beam parameters and observables

beam diagnostics method

27/08/2008

Fit the <u>simulated</u> observables vs. beam parameters \rightarrow get slopes $\rightarrow 1^{st}$ order Taylor coefficients matrix A:

9

beam diagnostics simulation chain

- generate beamstrahlung and pairs as a function of a certain beam parameter using the GuineaPig generator
- pass them through the Geant4 simulation of BeamCal to obtain the energy depositions on the sensors of BeamCal
- calculate observables and determine the (linear) slope of the Taylor expansion, construct the Moore-Penrose inverse
- use the MP_{inv} to reconstruct the beam parameters from the probing samples
- calculate reconstruction resolution from the spread of the results

Only one beam parameter (BP) is measured. The remaining parameters are at their nominal values.

Examples:

BP	unit	nom.	14mrad, no E_{γ}		14mrad, with E_{γ}	
			mean	b	mean	С
σχ	nm	655	654.7	2.8	653.7	1.3
σ_y	nm	5.7	5.63	0.47	5.61	0.39
σ _z	μm	300	305.7	3.6	300.8	1.7
Δy	nm	0	-1.42	0.81	-0.56	0.81
ΔX	nm	0	-5	10	-5	10

statistical error on few % level (or below) Sub-nm precision for σ_y

Improvement using energy measured in GamCal

qualitative representation of the observables' significance for beam parameter reconstruction:

read-out reduction

- use only a few sensor layers
- in the shower maximum \rightarrow less fluctuations
- grouping of pads
- radial and azimuthal grouping
- manual definition of group's radii and angles
- 32 pads in group \rightarrow one chip with 32 input channels serves one group
- cross talk issues

Energy/Layers. Etoi=133.242 GeV

single parameter mode, readout optimizations

Readout only of 1 or 2 sensor layers:

Using 2 layers in the 'shower maximum' range gives almost the same resolution as the full calorimeter, e.g. for σ_v

Full calorimeter readout.

Using grouped pads (reconstruction based on 6th layer):

BP	unit	read-out scheme				
		detailed	radial	azimuthal	rad.(8bit)	
σ_x	nm	3.11	3.29	3.5	3.34	
σ_y	nm	0.41	0.51	0.47	0.53	
σ _z	μm	4.27	5.58	4.28	3.94	
Δy	nm	0.88	0.91	0.95	0.93	

Slight deterioration of the resolution ,O(10%)

A full set of parameters cannot be reconstructed

- \rightarrow we can use only part of them:
- Bunch sizes
- Emittances
- Beam offsets
- Waist shifts
- Bunch rotations
- Profile rotations
- Number of particles

BP	unit	nom.	14mrad, with E_{γ}	
			sngl.par	multi-par
σ_x	nm	655	1.3	43
σ_y	nm	5.7	0.39	2.7
σ _z	μm	300	1.7	31
Δy	nm	0	0.81	1

correlations in multiparameter mode

Scatter plots of correlated beam parameters from probing data samples:

One can add more observables (beamstrahlung photons energy spectrum) to reduce the correlations and/or substitute the correlated of parameters by combined quantities.

Front-end electronics design

- Successive approximation ADC 1/ch
- Digital memory to store information of 1 train/ch
- Analog addition of 32 ch for fast feedback, 8 bit digitisation
- First prototypes in octobre!

summary

BeamCal and GamCal are invaluable tools for a fast luminosity estimate and for the determination of beam parameters

- The single parameter mode allows to reach precision of of a few % in in the measurement of beam parameters (per BX) using BeamCal and GamCal.
- In multi-parameter mode some of the beam parameters are highly correlated. They have to be substituted by combinations or additional information from other diagnostics systems are used.
- Read-out optimization studies have shown that only a few sensor planes are needed for beam parameter measurements.
- Grouping of pads for the fast readout leads only to a slight deterioration of the resolution.
- FE electronics to accommodate the fast readout of clustered pads is under design.

Be aware: beam parameter determination is very sensitive to the magnetic field between IP and BeamCal !